
 1

Gray Codes for Involutions

Timothy Walsh
Department of Computer Science, University of Quebec in Montreal (UQAM)

P.O. Box 8888, Station A, Montreal, Quebec, Canada H3C-3P8
walsh.timothy@uqam.ca

AMS Classification: 68R05, 05A05
Key words: involutions, Gray codes, non-recursive sequencing, loop-free sequencing

Abstract: A Gray code is a list of words such that each word differs from its successor by

a number of letters which is bounded independently of the length of the word. We use Roelants
van Baronaigien's I-code for involutions to derive a Gray code for all length-n involutions and
one for those with a given number of length-2 cycles. In both Gray codes, each involution is
transformed into its successor via one or two transpositions or a rotation of three elements. For
both Gray codes we obtain algorithms for passing between a word and its position in the list and
a non-recursive sequencing algorithm (transforming a given word into its successor or
determining that it is the last word in the list) which runs in O(n) worst-case time and uses O(1)
auxiliary variables; for involutions with a given number of length-2 cycles we also obtain a
sequencing algorithm which runs in O(1) worst-case time and uses O(n) auxiliary variables. We
generalize Chase's method for obtaining non-recursive sequencing algorithms to any list of words
in which all the words with a given suffix form an interval of consecutive words, and we show
that if in addition the letter preceding the suffix always takes at least two distinct values in that
interval, then Ehrlich's method will find in O(1) time the rightmost letter in which a word differs
from its successor.

0. Introduction

A length-n involution is a permutation (p1,p2,...,pn) of {1,...,n} such that for each i, 1≤i≤n,

either pi=i or else pi=j≠i and pj=i. An element pi is a fixed point of the involution if pi=i.

Example 1: The permutation (4,2,3,1,7,6,5,8)=(1,4)(2)(3)(5,7)(6)(8) is an involution with

four fixed points: 2, 3, 6 and 8.■

A fixed-point-free involution, or FPFI, is an involution with no fixed points. Algorithms

for generating all the involutions of length n in lexicographical order were presented in [7] and
[11]; [7] also contains algorithms for generating all the fixed-point-free involutions of length 2n
in lexicographic order. Roelants van Baronaigien's I-code for length-n involutions [11] turns out
to preserve not only lexicographical order but also closeness, so that to obtain a Gray code on the
set of all involutions, or on the set of FPFIs, it suffices to obtain a Gray code on the set of I-codes
for the corresponding set of involutions.

 2

In Section 1 we present a Gray code for FPFIs such that each FPFI is transformed into the

next one via two transpositions - two cycles (x,y) and (i,j) with x<y and |y-j|=1 are replaced by the
cycles (x,j) and (i,y), so that in one-line notation py=x swaps with its immediate neighbour pj=i
and px=y swaps with pi=j. This Gray code has an application to combinatorial map theory

because FPFIs represent rooted one-vertex maps on orientable surfaces [3].

In section 2 we present a Gray code for length-n involutions with k length-2 cycles (and

n-2k fixed points) such that each involution is transformed into its successor by either two
transpositions or a rotation of three elements. This Gray code is obtained by combining the Gray
code for FPFIs presented in section 1 with the Eades-McKay Gray code [5] for k-combinations of
{1,...,n}.

In Section 3 we present a Gray code for all length-n involutions such that each involution is

transformed into its successor by either one transposition, two transpositions or a rotation of three
elements.

The rank of an item w of a list L is the number of items preceding w in L, and to sequence

w is to find the successor to w in L or to determine that w is the last item of L. For all these Gray
codes we give ranking algorithms as well as non-recursive sequencing algorithms which run in
O(n) worst-case time and use O(1) auxiliary variables. We also give sequencing algorithms
which run in O(1) worst-case time and use O(n) auxiliary variables for the Eades-McKay Gray
code for combinations (described recursively in [5]) and our own Gray codes for FPFIs and for
involutions with k length-2 cycles. All the sequencing algorithms have been programmed in C
and tested (listings are available on request); we report the time-trials we conducted.

The non-recursive sequencing algorithms were derived using a method described by Chase

[2] for word lists in a generalized lexicographical order which he called Graylex order; here we
generalize it further to any list of words in which all the words with a given suffix form an
interval of consecutive words. Almost all the Gray codes in the literature have this property or
can be transformed into one that does by left-right reversal and/or position vectors, a notable
exception being Savage's Gray code for integer partitions [14]. We also show that the auxiliary
array used by Erhlich [6] to determine in constant time the rightmost letter which must change to
sequence a given word will work for any list of words with the above property provided that in
addition the letter preceding the suffix always takes at least two distinct values in that interval.
The I-code for FPFIs in Gray code order has this additional property; the Eades-McKay Gray
code does not, but sequencing can be made loop-free using an array-implemented stack. The I-

 3

code for all length-n involutions in Gray code order does not have this property, and although it
too can be sequenced in O(1) time using an auxiliary array, loop-free sequencing of the induced
Gray code for all length-n involutions is still an open problem.

1. Fixed-point-free involutions

The I-code for involutions [11] restricted to FPFIs is a lexicographical-order-preserving

bijection from the set of (2n-1)×(2n-3)×...×3×1 length-2n FPFIs in one-line notation onto the
Cartesian product of integer intervals [1,2n-1]×[1,2n-3]×...×[1,3]×[1,1]. By subtracting 1 from
each n-tuple and then dropping its last member, which is 0, we obtain the following
lexicographical-order-preserving bijection R from the set of length-2n FPFIs onto
[0,2n-2]×[0,2n-4]×...×[0,2]. Let (x(1),y(1))...(x(n),y(n)), where x(i)<y(i) for all i and
x(1)<...<x(n), be the canonical cycle notation for an FPFI. For each i, x(i) is the smallest element
in {1,...,2n}-{x(1),y(1),...,x(i-1),y(i-1)} and there are 2n-2i+1 elements in the set

S(i) = {1,...,2n} - {x(1),y(1),...,x(i-1),y(i-1),x(i)} (1)

from which to choose y(i). The function R maps the FPFI (x(1),y(1))...(x(n),y(n)) onto (g1,...,gn-

1), where gi is the number of elements of S(i) which are smaller than y(i) (see the first two

columns of Table 1).

The lexicographical-order rank of the word (g1,...,gn-1) is just the number g1...gn-1, where
each gi is in radix 2n-2i+1. Passing between the (modified) I-code and its rank can be done in

O(n) arithmetic operations including multiplying a small integer by a large one. Passing between
an FPFI F and R(F) takes O(n2) elementary operations if it takes O(n) time to remove an element
from the indexed set S(i). This estimate can be reduced to O(n log n) if the set S(i) is updated
using a balanced tree or the more space-efficient algorithms in [9, pp. 578-579 (answers to
exercises 5 and 6, p. 19] and O(n log n/log log n) using a more sophisticated data structure [4].

Example 2: Let F = (f1,...,fn) = (7,4,6,2,8,3,1,5). Then x(1)=1 and S(1)=(2,3,4,5,6,7,8).

Since y(1)=f1=7, which is greater than 5 of the elements of S(1), g1=5. Then x(2)=2 and
S(2)=(3,4,5,6,8). Since y(2)=f2=4, g2=1. Then x(3)=3 and S(3)=(5,6,8). Since y(3)=f3=6, g3=1.

Thus R(F)=(5,1,1), so that the lexicographical-order rank of F is 511 in base (7,5,3), which is
((5×3)+1)×5+1=81. Conversely, knowing the rank 81 of F we can extract R(F)=(5,1,1), and by
successive calculation of S(i) we can compute F.■

 4

The function R preserves closeness as well as lexicographic order: if gi is increased by 1,
then y(i) must rise to the next larger value j in the set S(i). In cycle notation, the two cycles
(x(i),y(i)) and (j,pj) are replaced by (x(i),j) and (y(i),pj), so that in one-line notation y(i) swaps
values with the element j, while x(i) swaps positions with pj, the nearest element to the right of
x(i) which is in the set S(i), or, equivalently, which is larger than x(i).

If we use the Gray code in [19, p. 112] for the set of (g1,...,gn-1), where g1 varies the

slowest, then x(i) will not always swap with its immediate neighbour - for example, when R(F)
passes from 20 to 21, F will pass from 432165 to 456123 - so that finding in O(1) time the
element with which x(i) is to swap is a non-trivial problem. If we instead allow g1 to vary the
fastest, then, when gi changes, all the gj, j<i, are at their extreme values, so that S(i) is an interval.
Thus y(i) must change by 1 and x(i) must swap with its immediate neighbour. Thus we choose
the latter Gray code for the set of words (g1,...,gn-1), 0≤gi≤2(n-i), and we define f(2n) to be the
corresponding Gray code induced on the set of FPFIs of {1,...,2n} (see the last two columns of
Table 1). The first value of F is (2,1,4,3,...,2n,2n-1) and R(F)=(0,...,0).

PUT TABLE 1 ABOUT HERE
All the words with a given suffix (gi+1,...,gn-1) form an interval of consecutive words in

which gi takes the sequence of distinct values (0,1,...,2(n-i)) if gi+1+...+gn-1 is even and
(2(n-i),...,1,0) otherwise (in the former case we say that gi is increasing and in the latter, that it is
decreasing). The rank of F in f(2n) is obtained by replacing each decreasing gi in R(F) by
2(n-i)-gi and then evaluating the resulting word as a mixed-radix integer in co-lexicographical
order (right-to-left), so that (continuing example 2) the word (5,1,1) corresponds to the rank
((1×5)+(4-1))×7)+5=61.

The first word (g1,...,gn-1)=(0,...,0). Each word (g1,...,gn-1) can be transformed into its

successor using the generic sequencing algorithm listed as Algorithm 1, which generalizes the
sequencing algorithm used in [2], [19] and many other places. It works for any list of words
(g1,...,gn-1) in which all the words with a common suffix (gi+1,...,gn-1) form an interval of
consecutive words in the list, so that this interval is partitioned into sub-intervals by the sequence
of distinct values assumed by gi (a proof of this observation can be found in [15]). It was shown

in [2] to work whenever all the sequences are monotone (Graylex order) but has been implicitly
used for many lists in which this condition does not hold, such as the Gray code for set partitions
in [6].

PUT ALGORITHM 1 ABOUT HERE
For each word w in a list except the last one, the pivot is the index of the rightmost letter

(the pivotal element) that must change to transform w into its successor. In the above Gray code
only one gi actually changes - all the gj, j<i, are now at their first values with respect to the new

 5

suffix - and this change in R(F)=(g1,...,gn-1) induces a corresponding pair of transpositions in the
FPFI F.

Example 3: If F=(8,4,6,2,7,3,5,1), then R(F)=(g1,g2,g3)=(6,1,1). Since g2+g3 is even, g1

takes the sequence of values (0,1,2,3,4,5,6); so g1 is already at its final value. Since g3 is odd, g2
takes the sequence of values (4,3,2,1,0); so 2 is the pivot and g2 drops to 0, changing R(F) to
(6,0,1) and F to (8,3,2,6,7,4,5,1).■

Example 4: If F=(2,1,4,3,7,8,5,6), then R(F)=(g1,g2,g3)=(0,0,1). Since g2+g3 is odd, g1

takes the sequence of values (6,5,4,3,2,1,0); so g1 is already at its final value. Since g3 is odd, g2
takes the sequence of values (4,3,2,1,0); so g2 too is at its final value. The suffix for g3 is empty,
with sum 0; so g3 takes the sequence of values (0,1,2). Thus 3 is the pivot and g3 rises to 2,
changing R(F) to (0,0,2) and F to (2,1,4,3,8,7,6,5).■

Once the generic sequencing algorithm is specialized to a particular list it can be optimized

in various ways. To avoid calculating the parity of gi+1+...+gn-1 for each new i we observe that
for each j<i, gj is either 0 or 2(n-j), which are both even, so that gi is increasing if and only if it
has the same parity as g1+...+gn-1. We store a Boolean variable Odd which is true if g1+...+gn-1
is odd; Odd is initialized to False for the first word (0,...,0) and changes value for each successive
word. Now the first, next and last value for each gi can be computed in O(1) time, so that the

sequencing algorithm for a length-n FPFI F runs in O(n) time and uses a size-n auxiliary array for
R(F).

To obtain a sequencing algorithm for f(2n) without having to store R(F) as an auxiliary

array we use the following theorem.

Theorem 1: Let F=(f1,...,fn) and let i be the pivot of R(F). If Odd is True, then x(i)=2i-1,

gi=y(i)-2i, F=(2,1,4,3,...,2i-2,2i-3,y(i)>2i,...) and i is the smallest value such that f2i-1>2i;
otherwise x(i)=i, gi=y(i)-(i+1), F=(2n,2n-1,...,2n-i+2,y(i)<2n-i+1,...,i-1,...,2,1) and i is the smallest
value such that fi<2n-(i-1) if there is one.

Proof: We recall that each gj, j<i, is at its extreme value, which is even. If Odd is True,

then gi is the leftmost letter of R(F) which is not 0. By the definition of the function R, x(1)=1,

y(1)=2, x(2)=3, y(2)=4, ... , x(i-1)=2i-3, y(i-1)=2i-2, x(i)=2i-1 but y(i)>2i, leading to the first
expression for F and thence to the first expression for i. The set S(i)-{x(i)} is the interval [2i,2n],
so that y(i)=gi+2i. If Odd is False, then gi is the leftmost letter of R(F) which is not 2(n-i), if

there is one. By the definition of R, x(1)=1, y(1)=2n, x(2)=2, y(2)=2n-1,...,x(i-1)=i-1, y(i-1)=2n-

 6

i+2, x(i)=i but y(i)<2n-i+1, leading to the second expression for F and thence to the second
expression for i. The set S(i)-{x(i)} is the interval [i+1,2n-i+1], so that y(i)=gi+i+1.■

We illustrate the sequencing algorithm by continuing examples 3 and 4.

In example 3, where F=(8,4,6,2,7,3,5,1), R(F)=(6,1,1) (which isn't stored); so Odd is False.

Now f1=8 but f2<7; so i=2. Then x(2)=2, y(2)=f2=4 and g2=4-(2+1)=1 which is odd; so it is
decreasing. Thus f4=2 trades places with its immediate left neighbour f3=6 and their mates f2=4
and f6=3 also trade places, so that F changes to (8,3,2,6,7,4,5,1).■

In example 4, where F=(2,1,4,3,7,8,5,6), R(F)=(0,0,1) (which isn't stored); so Odd is True.

Now f1=2 and f3=4 but f5>6; so i=3. Then x(3)=5, y(3)=f5=7 and g3=7-2×3=1 which is odd; so it
is increasing. Thus f7=5 trades places with its immediate right neighbour f8=6 and their mates
f5=7 and f6=8 also trade places, so that F changes to (2,1,4,3,8,7,6,5).■

The algorithm maintains only F, Odd and another Boolean variable Done which is

initialized to False and becomes True when the FPFI turns out to be the last one; so it uses O(1)
auxilliary variables but it takes O(n) time in the worst case to find the pivot i by scanning F from
left to right. This search can be avoided by using the auxiliary array e=(e1,...,en) introduced in
[1] and [6] and generalized in [19, p. 112] and elsewhere.

We generalize it further to any word list in which all the words with a common suffix
form an interval of consecutive words in which the letter preceding the suffix takes at least
two distinct values. Denote by ai, zi and hi the first value, last value and successor to gi,
respectively, in the sequence of distinct values assumed by gi as a function of the suffix
(gi+1,...,gn-1). Since gi takes at least two distinct values, ai is never equal to zi. A z-word is a
subword (gj,...,gk)=(zj,...,zk) which is maximal by inclusion: either j=1 or gj-1≠zj-1, and either k=n-
1 or gk+1≠zk+1. From Algorithm 1 it is clear that the pivot is the smallest value of i such that
gi≠zi. If g1≠z1, then 1 is the pivot. If (g1,...,gi-1) is a z-word, where i<n, then i is the pivot. If
(g1,...,gn-1)=(z1,...,zn-1), then it is the last word in the list and we call n the pivot. The generic

sequencing algorithm with loop-free pivot-finding is listed as Algorithm 2. We will show that
for each j, ej=j unless (gj,...,gk-1) is a z-word for some k>j, in which case ej=k. From this it
follows that e1 is always the pivot. The first word is (a1,...,an-1), and since ai≠zi for all i there are
no z-words. Since (e1,...,en) is initialized to (1,...,n) the formula for e holds initially, and the

comments in Algorithm 2 imply that if it holds before the algorithm is executed then it will hold
afterwards, so that it always holds.

PUT ALGORITHM 2 HERE OR HIGHER

 7

The list of I-codes for FPFIs satisfies the condition under which Algorithm 2 works. Using
Theorem 1 we implemented a loop-free sequencing algorithm for FPFIs without storing the
auxiliary array R(F) (see Algorithm 3). The time trials indicated that neither the elimination of
the auxiliary array R(F) nor the use of the auxiliary array e to make sequencing loop-free had any
significant effect on execution time.

PUT ALGORITHM 3 ABOUT HERE

 8

2. Involutions with a given number of length-2 cycles

We recall that f(2n) is the list of all the length-2n FPFIs in the order given by the Gray code
of Section 1 and we denote by fR(2n) the same list in reverse order.

Let C=(c1,c2,...,c2k), where c1<...<c2k, be a 2k-combination (subset) of {1,2,...,n} and F be

an FPFI (f1,f2,...,f2k). Denote by P(C,F) the involution whose 1-cycles are the elements of
{1,...,n}-C and whose 2-cycles are (ci,cj) for each 2-cycle (i,j) of F. Any involution can be

uniquely expressed as P(C,F) for some combination C and some FPFI F.

Example 5: If C is the combination (1,4,5,7) of {1,...,8} and F is the FPFI (2,1,4,3), then
P(C,F) is the involution (4,2,3,1,7,6,5,8).■

Given any 2k-combination C, we denote by P(C,f(2k)) the list of involutions P(C,F) as F

runs over f(2k), with a similar definition for P(C,fR(2k)). Given a list c(n,2k)=(C0,C1,...) of

2k-combinations of {1,...,n}, we denote by p(c(n,2k),f(2k)) the list

P(C0,f(2k))oP(C1,fR(2k))oP(C2,f(2k))o...,

where o is the concatenation operator for lists (we run through the Gray code for FPFIs
alternately forwards and backwards for each successive combination).

Two adjacent involutions in the same sublist P(C2a,f(2k)) or P(C2a+1,fR(2k)) will differ by

two transpositions: if in F the cycles (x,y) and (i,j) with x<y and |y-j|=1 are replaced by (x,j) and
(i,y), then in P(C2a,F) or P(C2a+1,F) the cycles (cx,cy) and (ci,cj) will be replaced by (cx,cj) and
(ci,cy), so that in one-line notation cx swaps with ci and cy swaps with cj, and each element m
between cx and ci will satisfy pm=m.

If P and its successor P' in p(c(n,2k),f(2k)) are in adjacent sublists, then P must be P(Ca,F)

and P' must be P(Ca+1,F), where F is either the last or the first FPFI in f(2k) depending upon

whether a is even or odd. The difference between P and P' will, of course, depend upon the
difference between adjacent words in c, but a minimal difference between Ca and Ca+1 as
subsets does not guarantee a minimal difference between P and P'. As an extreme example,
suppose that n=2k+1, Ca=(1,2,3,...,2k), Ca+1=(2,3,...,2k,2k+1) and F=(2,1,4,3,...,2k,2k-1). Now
Ca+1 differs from Ca by the minimal amount - one element swapped out and one element

swapped in - but P=(2,1,4,3,...,2k,2k-1,2k+1) and P'=(1,3,2,5,4,...,2k+1,2k) differ in all 2k+1
elements because the element 1 swapped out of Ca and the element 2k+1 swapped in have 2k-1

 9

elements in Ca between them (larger than 1 but smaller than 2k+1). Even a single element in Ck

between the element swapped in and the element swapped out, as occurs in both the Liu-Tang
Gray code [10] for combinations and the Gray code in [2], results in a rotation of 5 elements in
P(Ca,F) (see the example below).

With the Eades-McKay Gray code [5], on the other hand, Ca contains no elements between

the element old swapped out and the element new swapped in (and this is optimal in the sense
that for some values of n and k there is no Gray code in which the element swapped in and the
element swapped out differ by 1 [12]). Then old will simply be replaced by new in the sorted list
Ca. For any FPFI F, P(Ca,F) will be transformed into P(Ca+1,F) by replacing the two cycles
(old,mate), (new) by the two cycles (old), (new,mate), so that pold changes from mate to old,
pmate from old to new and pnew from new to mate and in one-line notation the transformation
made is the rotation (mate,old,new) = (pmate,pnew,pold). The corresponding Gray code for

involutions p(n,k) = P(c(n,2k),f(2k)) will have thus the property that any involution is
transformed into its successor by either two transpositions or a rotation of three elements.

The Eades-McKay Gray code c(n,k) for k-combinations of {1,...,n} (modified by reversing

each word, reversing the whole list and subtracting each number from n+1) is described
recursively by

c(n,k) = c(n-1,k) o cR(n-2,k-1)n o c(n-2,k-2)(n-1)n, (2)

anchored by c(k,k)=(1,2,3,...,k), c(n,1)=(1)o(2)o...o(n) and c(n,0) = the empty list. See Table 2
for a comparison of the Eades McKay Gray code with the Liu-Tang Gray code.

PUT TABLE 2 ABOUT HERE
Continuing example 5, the involution (1,4)(2)(3)(5,7)(6)(8)=(4,2,3,1,7,6,5,8)=P(C,F),

where C is the combination (1,4,5,7) of {1,...,8} and F is the FPFI (1,2)(3,4)=(2,1,4,3), the first
length-4 FPFI in f(4). The next combination after C in the Liu-Tang Gray code is C'=(1,2,4,7),
and P(C',F)=(1,2)(3)(4,7)(5)(6)(8)=(2,1,3,7,5,6,4,8), which is obtained from (4,2,3,1,7,6,5,8) by
the 5-element rotation (4,2,1,7,5). On the other hand, the next combination after C in the Eades-
McKay Gray code is C"=(1,2,5,7), and P(C",F)=(1,2)(3)(4)(5,7)(6)(8)=(2,1,3,4,7,6,5,8), which is
obtained from (4,2,3,1,7,6,5,8) by the 3-element rotation (4,2,1).■

To obtain a non-recursive description of c(n,k) we define run(i), for each i, to be the

maximum value of j such that ci+1,...,ci+j are consecutive integers, and we use the following

theorem. Note that whenever run(i) is even the Eades-McKay Gray code follows the same rule
shown in [2] to be followed by the Liu-Tang Gray code.

 10

Theorem 2: All the combinations with the same suffix (ci+1,...,ck) form an interval of

consecutive words in which ci takes the sequence of distinct values

i,i+1,...,m-1,m if k-i is even and run(i) is even,
m,m-1,...,i+1,i if k-i is odd and run(i) is even,
m,i,i+1,...,m-1 if k-i is even and run(i) is odd,
m-1,...,i+1,i,m if k-i is odd and run(i) is odd,

where m is equal to n if i=k and ci+1-1 otherwise.

Proof. This proposition is true for the anchoring lists c(k,k)=(1,2,3,...,k),

c(n,1)=(1)o(2)o...o(n) and c(n,0)=the empty list. Suppose that k≥2 and n≥k+1 and that the
proposition is true for the lists c(n-1,k), c(n-2,k-1) and c(n-2,k-2).

The sublists c(n-1,k), cR(n-2,k-1)n and c(n-2,k-2)(n-1)n of c(n,k) all have the property that

all the words with a common suffix form an interval of consecutive words, and this property is
passed on to c(n,k) because c(n-1,k) consists of all the combinations such that ck<n, cR(n-2,k-1)n
of those such that ck=n and ck-1<n-1, and c(n-2,k-2)(n-1)n of those such that ck=n and ck-1=n-1 so

that any two words in different sublists can have only the empty suffix in common.

It remains to verify the proposition that the sequence of (distinct) values attained by each ci

in each of those three sublists is the one stated in the theorem.

The last letter ck takes the sequence of values k,...,n-1 in the sublist c(n-1,k) and the value n

in each of the other two sublists; so it behaves as it should, since run(k) is always 0. The second-
last letter ck-1 behaves as it should in the sublist c(n-1,k) by the induction hypothesis, and since

its suffix is different in this sublist from in the other two we can treat this sublist by itself. In
cR(n-2,k-1)n it takes the sequence of values n-2,...,k,k-1 by the induction hypothesis, and in
c(n-2,k-2)(n-1)n it takes the value n-1; so that in cR(n-2,k-1)n o c(n-2,k-2)(n-1)n it takes the
sequence of values n-2,...,k,k-1,n-1, which satisfies the proposition since run(k-1) is always 1.

For the other letters ci, i≤k-2, the sublists can be treated separately, since ci will have a

different suffix in each of these sublists.

The proposition is true in the sublist c(n-1,k) by the induction hypothesis.

The sequence of values attained by ci for 1≤i≤k-2 in the interval of words with a common

suffix is the reverse in cR(n-2,k-1) of what it is in c(n-2,k-1). But when n is appended at the right

 11

of each word in cR(n-2,k-1) to make cR(n-2,k-1)n, 1 is added to each k, changing the parity of k-i,
and run(i) is never changed, which, according to the proposition, reverses the sequence of values
attained by ci. It follows that the proposition holds in cR(n-2,k-1)n.

Appending n-1 and then n to the right of each word in c(n-2,k-2) changes k by 2 and run(i)

by either 0 or 2; so the proposition holds in c (n-2,k-2)(n-1)n as well.

The result follows by induction on n.■

We note here that Ruskey [13] proved that the Knuth Gray code [18] for integer

compositions is isomorphic to the Eades-McKay Gray code, so that Klingsberg's non-recursive
description [8] of Knuth's Gray code could be used to obtain a non-recursive description of the
Eades-McKay Gray code.

To optimize the generic sequencing algorithm for this Gray code we use the following

theorem.

Theorem 3: Let r=run(0). Then the pivot cannot have any value other than 1, r or r+1. If
the pivot is r+1, then cr+1 drops to cr+1.

Proof. If k=1, then the pivot, if it exists, must be 1; so we assume that k>1.

Suppose that r>1, so that c1=c2-1, and suppose also that 1 is not the pivot, so that c1 is at its

last value. Since c1 is at its maximum value m as defined in the statement of Theorem 2, either k-
1 and run(1)=r-1 must have the same parity or else m=1. For each i, 1≤i≤r-1, ci=ci+1-1, so that ci

is also at its maximum value. If k-1 and run(1) have the same parity, then so do k-i and run(i)=r-
i, and if the maximum value of c1 is 1 then the maximum value of ci is i, so that in either case
each of these ci will be at its last value. Therefore the pivot cannot be smaller than r.

Since r=run(0), either r=k or else cr<cr+1-1. If r=k, then either cr=n, in which case the

combination is the last one, or else r is the pivot. Suppose that r<k, so that cr<cr+1-1, and
suppose also that r is not the pivot, so that cr is at its last value. Since cr is not at its maximum

value, it follows that k-r and s=run(r) must have opposite parity.

Suppose that s is even, so that k-r is odd, and so cr=r. Then k-(r+1) is even and

run(r+1)=s-1, which is odd. Also, since run(r)>1, cr+1 is at its maximum value; so it must jump
to r+1, which is cr+1.

 12

Suppose that s is odd and s>1. Then k-r is even, and so cr=cr+1-2. Also k-(i+1) is odd and

run(r+1)=s-1, which is even, and cr+1 is at its maximum value; so it drops by 1 to cr+1.

Finally, suppose that s=1, so that k-r is even. Then cr+1=cr+2>r+1. Also, k-(r+1) is odd;

so once again cr+1 drops by 1 to cr+1 unless cr+1 is at its maximum value and run(r+1) is odd.
But that would imply that cr+1=cr+2-1, which contradicts the fact that run(r)=1.

In all cases where neither 1 nor r is the pivot and r<k, r+1 is the pivot and cr+1 drops to

cr+1.■

It follows that the generic sequencing algorithm, specialized to the Eades-McKay Gray

code for combinations, becomes the algorithm listed as Algorithm 4. The only variable that has
to be maintained from one combination to the next is the Boolean variable Done, which is true if
the current combination is the last one. The first combination is (1,2,...,k) and for this
combination Done is False.

PUT ALGORITHM 4 ABOUT HERE
Once r=run(0) and s=run(r) have been computed, testing whether c1 or cr is at its last value

and, if not, changing it to its next value can be done in O(1) time using Theorem 2. It takes O(k)
time to compute r and s by scanning the combination, so that the sequencing algorithm runs in
O(k) time and uses O(1) auxiliary variables.

The auxiliary array e cannot be used to make the algorithm run in O(1) time because there
are proper suffixes which are not common to more than one word (for example, the suffix (4) in
Table 2). Instead we store the lengths of the maximal subwords of consecutive integers in the
word (c1,c2,...,ck) on a stack, with the lengths r and s of the leftmost two such subwords on the

top of the stack. At most the top two elements of the stack and the top-of-stack index have to be
updated; so this version of the sequencing algorithm runs in O(1) time. Both versions of this
algorithm can easily be modified to generate non-decreasing (rather than strictly increasing)
sequences of integers between 1 and n, as well as compositions of n where two adjacent elements
change value from one composition to the next (but not always by 1). A loop-free
implementation of the Knuth-Klingsberg Gray code for integer compositions (in which two
elements which are not always adjacent change by 1) appears in [15].

Time trials indicate that introducing the stack reduces the run-time by about 5% for

generating c(2k,k). We have implemented the Liu-Tang Gray code so that it runs in O(1) worst-
case time and uses O(1) auxiliary variables by using the fact that the pivot differs by at most 2

 13

from one combination to the next [15] (see Table 2); this implementation runs more than twice as
quickly as either implementation for generating c(n,k). It too can be modified to sequence
integer compositions in O(1) time using O(1) auxiliary variables (but three integers may change).
We note here that [2] also sequences combinations in O(1) time and extra space but in a different
order.

Combinations can be ranked and unranked in c(n,k) in O(n) arithmetic operations using the

following ranking formula (which is admittedly more complicated than ranking combinations in
lexicographical order but is included here for its recreational value):

Rank(c1,c2,... ,cn) =

(−1)k−i

ci
i

⎛
⎝
⎜ ⎞

⎠
 if run(i) is even

ci+1 − 2
i −1

⎛
⎝
⎜ ⎞

⎠
+

ci
i

⎛

⎝
⎜ ⎞

⎠
 if ci < ci+1 −1

0 otherwise

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
 otherwise

⎧

⎨

⎪ ⎪

⎩

⎪
⎪

⎫

⎬

⎪ ⎪

⎭

⎪
⎪

i=1

k

∑ − (k mod 2). (3)

The rank of the involution P(C,F) in P(C0,f(2k))oP(C1,fR(2k))oP(C2,f(2k))o... is
(2k-1)×(2k-3)×...×3 times the rank r of C in c(n,2k) = C0,C1,C2,... plus the rank of F in either

f(2k) if r is even or in fR(2k) otherwise.

When the sequencing algorithm of Algorithm 3 processes the last word of f(2k), Odd will
be False and e will be (k,2,3,4,...,k). To begin generating fR(2k) (after changing C to its
successor) it suffices to change Odd to True and e1 from k to 1 (Odd now refers to the parity of

the rank of the involution P(C,F)). Thus, we can sequence each involution P(C,F) of
P(C0,f(2k))oP(C1,fR(2k))oP(C2,f(2k))o... in O(1) time if we keep four auxiliary arrays: F, e, C

and the stack of run-lengths of C. The array e is of size k and the other three auxiliary arrays are
all of size 2k; so the extra space needed is in O(k), and thus in O(n).

If we are prepared to scan each involution P=P(C,F) we can get enough information about

C and F to update P without storing any auxiliary arrays, so that the algorithm runs in O(n)
worst-case time but uses only O(1) auxiliary variables. To this end we observe that an element pi
of P is in C iff pi≠i and that the form of F as given in Theorem 1 has to be modified to the

corresponding FPFI on the elements of C (see [16] for details). This sequencing algorithm ran
only 3% slower than the loop-free algorithm that uses four auxiliary arrays.

 14

3. All length-n involutions

The I-code is a lexicographical-order-preserving injection that maps each length-n
involution with c cycles onto a c-tuple of non-negative integers, except that if c=n then the last
member of the n-tuple, which is a zero, is dropped. A general involution P will have 1-cycles
(x(i)) as well as 2-cycles (x(i),y(i)). To make the cycle notation canonical, we insist that x(i)<y(i)
and that x(1)<...<x(c). If (x(i)) is a 1-cycle we define y(i)=x(i), so that in general x(i)≤y(i) for all i,
with equality in the case of a 1-cycle. Let S(1)={1,...,n}, and for each i from 2 to c+1 let

S(i) = S(i -1) - {x(i-1)}'{y(i-1)}. (4)

The smallest element in S(i) is x(i), and y(i) can take any value in S(i) including x(i). The word
(g1,...,gc), where gi is the number of elements of S(i) which are smaller than y(i), is the I-code for

P, with the exception noted above. By padding each word on the right with zeroes to make it of
length n-1 we obtain a lexicographical-order-preserving injection from the set of length-n
involutions P into the set of (n-1)-tuples of non-negative integers R(P)=(g1,...,gn-1).

Example 6: If P=(4,2,5,1,3,6)=(1,4)(2)(3,5)(6) in canonical cycle notation, then x(1)=1,

y(1)=4, x(2)=y(2)=2, x(3)=3, y(3)=5 and x(4)=y(4)=6, so that R(P)=(3,0,1,0,0) (the last zero is
padding).

 As P is changed to its lexicographical-order successor its pivotal element (which is now

the leftmost letter which changes) may increase by more than 1, but the pivotal element of R(P)
always increases by 1 (see Table 3).

PUT TABLE 3 ABOUT HERE
Just as with FPFIs one can pass between a general involution P in one-line notation and

R(P) by successive computation of S(i) from (4). In [11] the algorithms are written explicitly and
it is stated that their complexity is O(n2). This estimate is sharp if it takes linear time to remove
an element from an indexed set; as with FPFIs it can be reduced to O(n log n) or better using
more efficient deletion algorithms.

In [11] there is an algorithm for passing from R(P) to the lexicographical-order rank of P

which takes O(n log n) arithmetic operations and uses a table of size O(n2). We improve the time
estimate to O(n) and the space estimate to O(1).

We describe the set of words (g1,...,gn-1) that are the images of length-n involutions under

the function R. In particular, given any such word with prefix (g1,...,gi-1), we find the maximum

 15

value that gi can attain. Let #(S) represent the cardinality of the set S. Then #(S(1))=n, and from
(4) it follows that for all i, 1<i≤c+1, if gi-1=0 so that y(i-1)=x(i-1), then #(S(i))=#(S(i-1))-1, and if
gi-1>0 so that y(i-1)>x(i-1), then #(S(i))=#(S(i-1))-2. Since gi is the number of elements of S(i)

less than y(i), it can take any integer value from 0 up to #(S(i))-1, whch we denote by b(i) (a
function not only of i but also of the prefix (g1,...,gi-1)), which can be calculated recursively from

formula (5):

b(1) = n −1 and for 1 < i ≤ c +1

 b(i) =
b(i −1) −1 if gi−1 = 0,
b(i −1) − 2 if gi−1 > 0.
⎧
⎨
⎪

⎩ ⎪ (5)

From the definition of b(i), b(c+1)=-1 because S(c+1)={}; so the values of all the b(i) can
be calculated from (5) for i decreasing as well as increasing.

Let I(n) be the number of length-n involutions. There is a closed-form formula for I(n) in

[7], but it is easier to evaluate even a single value of I(n) from the recursive formula (6) below:

I(0)=I(1)=1 and for n≥2, I(n)=I(n-1)+(n-1)I(n-2). (6)

This recursion follows from the fact that there are I(n-1) involutions P=(p1,p2,...,pn) with p1=1
and I(n-2) involutions for each value 2,...,n of p1 [11].

Let #(g1,...,gi-1) be the number of involutions whose padded I-codes have prefix (g1,...,gi-1).

These involutions are induced by the involutions of the set S(i), and since #(S(i))=b(i)+1, where
b(i) is computed recursively by (5), we have

#(g1,...,gi-1) = I(b(i)+1). (7)

To calculate the rank of (g1,...,gn-1) we note that among all the words with prefix

(g1,...,gi-1), the number of words that come before the first word with prefix (g1,...,gi) is 0 if gi=0,
and otherwise it is #(g1,...,gi-1,0)+(gi-1)#(g1,...,gi), which, by (7) and (5), is I(b(i))+(gi-1)I(b(i)-1).

We thus obtain the following ranking formula:

rank(g1,.. ., gn−1) =
0 if gi = 0

I(b(i)) + (gi −1)I(b(i) −1) otherwise ,
⎧
⎨
⎩ i=1

n−1
∑ (8)

 16

where I(n) is given by (6) and b(i) by (5).

To find the word of rank r, for i from 1 to n-1 we let gi be the largest value such that

subtracting the summand of (8) from r leaves a non-negative number:

gi =
0 if r < I(b(i))

1+ (r − I(b)) / I(b −1)⎣ ⎦ otherwise , (9)⎧
⎨
⎩

where I(n) is given by (6) and b(i) by (5).

Ranking and unranking the words can be done in O(n) arithmetic operations with or

without a precomputed table of I, so that the complexity of ranking and unranking involutions is
dominated by that of passing between an involution and its I-code.

We define the following Gray code on the set of words (g1,...,gn-1) such that 0≤gi≤b(i): in

any interval of words with prefix g1g2...gi-1, let gi take the sequence of distinct values

si =
1,2, .. ., b(i), 0 if g1+. ..+gi−1 is even,
0, b(i), . .., 2,1 if g1+... +gi−1 is odd.

⎧
⎨
⎩

 (10)

The rank of the word (g1,...,gn-1) in Gray code order is given by

I(b(i) −1) *
gi −1 if gi > 0
b(i) if gi = 0

⎧
⎨
⎩

⎫
⎬
⎭

 if g1+. ..+gi−1 is even

0 if gi = 0
I(b(i)) + (b(i) − gi)I(b(i) −1) otherwise
⎧
⎨
⎩

⎫
⎬
⎭

 otherwise.
 (11)

⎧

⎨
⎪

⎩
⎪ i=1

n−1
∑

To unrank, subtract the maximum value possible from r without making it negative by

setting

gi =

0 if r ≥ I(b(i) −1)* b(i)
1+ r / I(b(i) −1)⎣ ⎦ otherwise
⎧
⎨
⎩

⎫
⎬
⎭
 if g1+...+gn−1 is even

0 if r < I(b(i))
b − (r − I(b(i))) / I(b(i) −1)⎣ ⎦ otherwise
⎧
⎨
⎩

⎫
⎬
⎭
 otherwise .

 (12)

⎧

⎨
⎪

⎩
⎪

 17

The first word (g1,...,gn-1) in this Gray code is (1,0,...,0) and the last one is (0,...,0). To find

the successor to a given word we use the generic sequencing algorithm listed as Algorithm 1 with
left and right reversed and with some optimizations introduced for the sake of efficiency.

To avoid computing the parity of g1+...+gi-1 from scratch for each i, we store the parity of

g1+...+gi-1 in a Boolean variable Odd, and for each word we initialize another variable OddPrefix
to Odd and then while scanning the word from right to left to search for the pivot we change
OddPrefix whenever gi is odd. To avoid computing b(i) recursively (from left to right) from (5),
we store c, begin the right-to-left scan from i=c instead of n-1 (if c=n we know that the word is
(0,...,0)), and during the scan we initialize a variable b to -1 and increase it by 1 if gi=0 and by 2
otherwise (expressing b(i) in terms of b(i+1) using (5)).

Further economies can be made using the following two theorems.

Theorem 4: If Odd is true, then the pivot is c if gc>0 and c-1 otherwise. If Odd is false, let

i be the largest index such that gi>0 (if no such i exists then the pivot is 0). Then the pivot is i if
gi>1 and i-1 otherwise.■

Theorem 5: Let i>0 be the pivot. Then the suffix (gi+1,gi+2,...,gn-1) changes from 00...0 to

10...0 if gi jumps from an even number to 0, from 10...0 to 00...0 if gi jumps from 0 to an even
number, and is unchanged otherwise. The value of c decreases by 1 if gi jumps from 0 to an odd
number, increases by 1 if gi jumps from an odd number to 0, and is unchanged otherwise. The

value of Odd always changes.■

The reader is invited to verify these theorems for n≤5, as well as Theorem 6 which shows

that this Gray code induces a Gray code on the set of length-n involutions, by examining Table 4.
PUT TABLE 4 ABOUT HERE

Theorem 6: In passing from an involution P and R(P)=(g1,...,gn-1) to its successor, one
pair of elements of P swaps places if gi passes between 0 and an odd number, two pairs swap
places if gi passes between 0 and an even number greater than 2 or between 1 and 2 if gi+1=1, and

three elements rotate under all other conditions.

Proof: We do a case-by-case analysis, illustrating each case with a table in which the first

line contains the elements of Si in increasing order, and the second and third lines contain the old

and new elements (with the old names) of P occupying the positions whose index is given
directly above them in the first line (see Table 5).■

PUT TABLE 5 ABOUT HERE

 18

Implementation details of the sequencing algorithm for the involution P, with and without
storing the auxiliary array R(P), are given in [17]. If the auxiliary array is not stored, then only
O(1) auxiliary variables are used; in either case the worst-case time-complexity is O(n). Storing
the array reduced the execution time by about 4% and using Theorem 4 to find the pivot reduced
execution time by about 20%.

The Gray code for I-codes can be sequenced in O(1) time by storing the positions of all the

non-zero elements on a stack. If i is the pivot of an I-code, then x(i) is the pivot of the
corresponding involution (see Table 5); however, the array (x(1),x(2),...,x(c)) can change by Ω(n)
letters from one involution to the next. Worst-case constant-time sequencing of involutions is
still an open problem.

Acknowledgment: R. Cori posed the problem of finding a Gray code for fixed-point-free

involutions and suggested the original ranking and unranking algorithms. F. Ruskey sent me the
article [4] which makes ranking and unranking asymptotically more efficient. P. Leroux
suggested finding a Gray code for general involutions. And NSERC collaborated with the
Computer Science Department of the Université du Québec à Montréal in financing this research.

REFERENCES

[1]: J.R. Bitner, G. Ehrlich and E.M. Reingold, Efficient generation of the binary reflected Gray
code and its applications, Comm. ACM 19 (1976), pp. 517-521.

[2]: P.J. Chase, Combination generation and graylex ordering, in Proceedings of the 18th
Manitoba Conference on Numerical Mathematics and Computing, Winnipeg, 1988, Congressus
Numerantium 69 (1989), pp. 215-242.

[3]: R. Cori, Un code pour les cartes planaires et ses applications, Astérisque, Paris, 1975.

[4]: P.F. Dietz, Optimal algorithms for list indexing and subset rank, in Proceedings of the 1989
Workshop on Algorithms and Data Structures in Ottawa, Canada, published in Lecture Notes in
Computer Science 382, Springer-Verlag, Berlin, 1989, pp. 39-46.

[5]: P. Eades and B. McKay, An algorithm for generating subsets to fixed size with a strong
minimal change property, Information Processing Letters 19 (1984), pp. 131-133.

[6]: G. Ehrlich, Loopless algorithms for generating permutations, combinations, and other
combinatorial configurations, J. ACM 20 (1973), pp. 500-513.

 19

[7]: E. Foundas and A. Sapounakis, Algorithms on involutions, Journal of Information and
Optimization Sciences 12 (1991), pp. 339-361.

[8]: P. Klingsberg, A Gray code for compositions, Journal of Algorithms 3 (1982), pp. 41-44.

[9]: D.E. Knuth, The art of computer programming, Vol. 3 (sorting and searching), Addison-
Wesley, Reading, Mass., 1973.

[10]: C.N. Liu and D.T. Tang, Algorithm 452, Enumerating M out of N objects, Comm. ACM 16
(1973), p. 485.

[11]: D. Roelants van Baronaigien, Constant time generation of involutions, Congressus
Numerantium 90 (1992), pp. 87-96.

[12]: F. Ruskey, Adjacent interchange generation of combinations, Journal of Algorithms 9
(1988), pp. 162-180.

[13]: F. Ruskey, Simple combinatorial Gray codes constructed by reversing sublists, in 4th
International Symposium on Algorithms and Computation, published in Lecture notes in
Computer Science 672 (1993), pp. 201-208.

[14]: C. Savage, Gray code sequences of partitions, Journal of Algorithms 10 (1989), pp. 577-595.

[15]: T.R. Walsh, A simple sequencing and ranking method that works on almost all Gray codes,
Research report 243, Department of Mathematics and Computer Science, Université du Québec à
Montréal, 1995, 53 pages.

[16]: T.R. Walsh, A Gray code for involutions with a given number of fixed points, Research
report 10, Department of Computer Science, Université du Québec à Montréal, July 1997, 13
pages.

[17]: T.R. Walsh, A Gray code for all length-n involutions, Research report 9, Department of
Computer Science, Université du Québec à Montréal, July 1997, 11 pages.

[18]: H. S. Wilf, Combinatorial algorithms: an update, SIAM, Philadelphia, 1989.

[19]: S.G. Williamson, Combinatorics for computer science, Computer Science Press, Rockville,
1985.

 20

 lexicographical Gray code
 order order

 F R(F) F R(F)
 214365 00 214365 00
 215634 01 341265 10
 216543 02 432165 20
 341265 10 532614 30
 351624 11 632541 40
 361542 12 645231 41
 432165 20 546213 31
 456123 21 456123 21
 465132 22 351624 11
 532614 30 215634 01
 546213 31 216543 02
 564312 32 361542 12
 632541 40 465132 22
 645231 41 564312 32
 654321 42 654321 42

Table 1
The fixed-point-free involutions F of {1,...,6} and their I-codes R(F)

in lexicographical and Gray-code order.

 21

Search for the leftmost gi which is not at the last value in its sequence;
if such a gi is found then { i is the pivot }
 Change gi to the next value in the sequence;
 Change each gj, j<i, which is not already at the first value in its sequence to the first value
else the current word is the last one.

Algorithm 1
A generic sequencing algorithm for transforming the word (g1,...,gn-1) into its successor using the

sequence of distinct values attained by gi as a function of its suffix (gi+1,...,gn-1).

 22

{Before execution:}

{for all j, e[j]=j unless (g[j],...,g[k-1]) is a z-word for some k>j, in which case e[j]=k. }
i:=e[1];
if i=n then { (g[1],...,g[n-1])=(z[1],...,z[n-1]) }
 Done:=True; return
end if; {Otherwise (g[1],...,g[i-1])=(z[1],...,z[i-1]) but g[i]≠z[i] so that i is the pivot .}

{ In either case (e[1],...,e[i-1],e[i])=(i,2,3,...,i-1,i). }
(g[1],...,g[i-1],g[i]) := (a[1],...,a[i-1],h[i]); { O(1) changes in the case of a Gray code }
update any other auxiliary variables;
e[1]:=1;
if g[i]=z[i] then { Either e[i+1]=i+1, g[i+1]≠z[i+1] and (z[i]) is a z-word or else }

 { e[i+1]=k+1>i+1, (g[i+1],...,g[k]) was a z-word and now (g[i],g[i+1],...,g[k]) is a z-word. }
 e[i]:=e[i+1]; { Now (g[i],...,g[k]) is a z-word and e[i]=k+1 whether k=i or not. }
 e[i+1]:=i+1 { Since g[i]=z[i], g[i+1] cannot begin a z-word. }
end if. { Otherwise either i=1 or g[1]=a[1] and in either case g[1]≠z[1] and e[1] is still 1. }

{After execution:}
{for all j, e[j]=j unless (g[j],...,g[k-1]) is a z-word for some k>j, in which case e[j]=k. }

Algorithm 2

Generic sequencing algorithm for (g[1],...,g[n-1]) with loop-free pivot-finding
using the auxiliary array (e[1],...,e[n]). Here a[i], z[i] and h[i] are, respectively, the first value,
the last value and the next value after g[i] in the sequence of distinct values taken by g[i] in the

interval of words with the suffix (g[i+1],...,g[n-1]). Initally g[j]=a[j] and e[j]=j for all j.

 23

i:=e[1]; { i is the pivot in R(F)=(g[1],...,g[n-1]) }
if i=n then { F is the last FPFI }
 Done:=True; return
end if;
{ in what follows, x = x(i), y = y(i), g = g[i], and Up is true if g[i] is increasing }
if Odd then { R(F) has odd sum }
 x:=2*i-1; y:=f[x]; g:=y-2*i; Up:=(g is odd)
else
 x:=i; y:=f[x]; g:=y-(i+1); Up:=(g is even)
end if;
if (Up) then { g[i] must increase }
 g:=g+1; j:=y+1; { f[j] is the right neighbour of f[y]=x }
else { g[i] must decrease }
 g:=g-1; j:=y-1; { f[j] is the left neighbour of f[y]=x }
end if;
swap f[y]=x with f[j]; swap f[x]=y with f[f[j]]=j;
Odd:=not(Odd);
e[1]:=1;
if (g=0) or (g=2*(n-i)) then { the new g[i] is at its last value }
 e[i]:=e[i+1];
 e[i+1]:=i+1
end if.

Algorithm 3

 O(1)-time sequencing algorithm for the FPFI F=(f[1],...,f[2n])
using only the size-n auxiliary array e (initialized to (1,2,...,n)).

 24

1234 1234
1245 1235
2345 1245
1345 1345
1235 2345
1256 2346
2356 1346
1356 1246
3456 1236
2456 1256
1456 1356
1246 2356
2346 2456
1346 1456

 1236_ 3456_

Table 2
The Liu-Tang Gray code (left) and the Eades-McKay Gray code (right)
 for the 4-combinations of {1,...,6}. The pivotal element is underlined.

 25

r:=run(0);
if r>1 then { run(1)=r-1 and the sequence of distinct values taken by c[1] is given in Theorem 2 }
 if c[1] is not at its last value then { the pivot is 1 }
 c[1] := its next value; return
 end if
end if;
s:=run(r); { the sequence of distinct values taken by c[r] is given in Theorem 2 }
if c[r] is not at its last value then { the pivot is r }
 c[r] := its next value; return
end if;
if r<k then { the pivot is r+1 }
 c[r+1] := c[r]+1
else { the current combination is the last one }
 Done := True
end if.

Algorithm 4
Non-recursive sequencing algorithm for the Eades-McKay Gray code

for k-combinations of {1,...,n}. Initially c[i]=i for all i and Done is False.

 26

 n=1 n=2 n=3 n=4 n=5

R(P) P R(P) P R(P) P R(P) P R(P) P R(P) P
 1 0 12 00 123 000 1234 0000 12345 1000 21345
 1 21 01 132 001 1243 0001 12354 101o 21354
 10 213 010 1324 0010 12435 110o 21435
 20 321 020 1423 0020 12543 120o 21543
 100 2134 0100 13245 2000 32145
 11o 2143 011o 13254 201o 32154
 200 3214 0200 14325 210o 34125
 21o 3412 021o 14523 220o 35142
 300 4231 0300 15342 3000 42315
 31o 4321 031o 15432 301o 42513
 310o 43215
 320o 45312
 4000 52341
 401o 52431
 410o 53241
 420o 54321

Table 3
Involutions P of length n and the padded I-code R(P) for 1≤n≤5 in lexicographical order.

A padding 0 is written as o and the pivotal element is underlined.

 27

 n=1 n=2 n=3 n=4 n=5

R(P) P R(P) P R(P) P R(P) P R(P) P R(P) P
 1 1 21 10 213 100 2134 1000 21345 0100 13245
 0 12 20 321 11o 2143 101o 21354 011o 13254
 01 132 21o 3412 120o 21543 021o 14523
 00 123 200 3214 110o 21435 0200 14325
 300 4231 210o 34125 0300 15342
 31o 4321 220o 35142 031o 15432
 010 1324 201o 32154 0010 12435
 020 1423 2000 32145 0020 12543
 001 1243 3000 42315 0001 12354
 000 1234 301o 42513 0000 12345
 320o 45312
 310o 43215
 410o 53241
 420o 54321
 401o 52431
 4000 52341

Table 4
Involutions P of length n and the padded I-code R(P) for 1≤n≤5 in Gray code order. In R(P), a
padding 0 is written as o and the pivotal element is underlined. In P, two elements which swap

or three which rotate are underlined, and if two pairs exchange then one of them is in italics.

 28

Case 1: gi>0 and increases by 1: y(i) rises to the next value in Si, say j.
 Subcase 1a: gi increases from 1 to 2 and gi+1=1: pj≠j
index: x(i) y(i) j pj
before: y(i) x(i) pj j
after: j pj x(i) y(i) Two pairs swap.
 Subcase 1b: otherwise: pj=j.
index: x(i) * * * y(i) pj=j
before: y(i) x(i) j
after: j y(i) x(i) Three elements rotate.
Case 2: gi>1 decreases by 1: y(i) falls to the next value in Si, say j.
The analysis is similar to that of Case 1 except that the second and third columns (with y(i) and j
in the first line) change places.
Case 3: gi jumps from b(i) to 0: y(i) drops from the largest member of Si to x(i).

 Subcase 3a: b(i) is even: the suffix b(i)00...0 changes to 010...0.
 Subsubcase 3a.i: b(i)>2:
index: x(i) x(i+1)=y(i+1) x(i+2)=y(i+2) * x(i)
before: y(i) y(i+1) y(i+2) x(i)
after: x(i) y(i+2) y(i+1) y(i) Two pairs swap.
 Subsubcase 3a.ii: b(i)=2:
index: x(i) x(i+1)=y(i+1) y(i)
before: y(i) y(i+1) x(i)
after: x(i) y(i) y(i+1) Three elements rotate.
 Subcase 3b: b(i) is odd:
index: x(i) * * y(i)
before: y(i) x(i)
after: x(i) y(i) One pair of elements swaps.
Case 4: gi jumps from 0 to b(i): y(i) jumps from x(i) to j, the largest element of Si.

 Subcase 4a: b(i) is even: the suffix 010...0 changes to b(i)10...0.
 Subsubcase 4a.i: b(i)>2:
index: x(i)=y(i) x(i+1) y(i+1) * pj=j
before: y(i) y(i+1) x(i+1) pj=j
after: j x(i+1) y(i+1) y(i) Two pairs swap.
 Subsubcase 4a.ii: b(i)=2:
index: x(i)=y(i) x(i+1)=pj y(i+1)=j
before: y(i) j pj
after: j pj y(i) Three elements rotate.

 Subcase 4b: b(i) is odd:
index: x(i)=y(i) * * pj=j
before: y(i) j
after: j y(i) One pair of elements swaps.

 29

Table 5

Transformation induced on an involution P by passing from R(P) to its successor in the Gray
code

