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Abstract:  A Gray code is a list of words such that each word differs from its successor by 

a number of letters which is bounded independently of the length of the word.  We use Roelants 
van Baronaigien's I-code for involutions to derive a Gray code for all length-n involutions and 
one for those with a given number of length-2 cycles.  In both Gray codes, each involution is 
transformed into its successor via one or two transpositions or a rotation of three elements.  For 
both Gray codes we obtain algorithms for passing between a word and its position in the list and 
a non-recursive sequencing algorithm (transforming a given word into its successor or 
determining that it is the last word in the list) which runs in O(n) worst-case time and uses O(1) 
auxiliary variables; for involutions with a given number of length-2 cycles we also obtain a 
sequencing algorithm which runs in O(1) worst-case time and uses O(n) auxiliary variables.  We 
generalize Chase's method for obtaining non-recursive sequencing algorithms to any list of words 
in which all the words with a given suffix form an interval of consecutive words, and we show 
that if in addition the letter preceding the suffix always takes at least two distinct values in that 
interval, then Ehrlich's method will find in O(1) time the rightmost letter in which a word differs 
from its successor. 

 
0.  Introduction 

 
A length-n involution is a permutation (p1,p2,...,pn) of {1,...,n} such that for each i, 1≤i≤n, 

either  pi=i or else pi=j≠i and pj=i.  An element pi is a fixed point of the involution if pi=i.  

 
Example 1: The permutation (4,2,3,1,7,6,5,8)=(1,4)(2)(3)(5,7)(6)(8) is an involution with 

four fixed points: 2, 3, 6 and 8.■ 
 
A fixed-point-free involution, or FPFI, is an involution with no fixed points.  Algorithms 

for generating all the involutions of length n in lexicographical order were presented in [7] and 
[11]; [7] also contains algorithms for generating all the fixed-point-free involutions of length 2n 
in lexicographic order.  Roelants van Baronaigien's I-code for length-n involutions [11] turns out 
to preserve not only lexicographical order but also closeness, so that to obtain a Gray code on the 
set of all involutions, or on the set of FPFIs, it suffices to obtain a Gray code on the set of I-codes 
for the corresponding set of involutions. 
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In Section 1 we present a Gray code for FPFIs such that each FPFI is transformed into the 

next one via two transpositions - two cycles (x,y) and (i,j) with x<y and |y-j|=1 are replaced by the 
cycles (x,j) and (i,y), so that in one-line notation py=x swaps with its immediate neighbour pj=i 
and px=y swaps with pi=j.  This Gray code has an application to combinatorial map theory 

because FPFIs represent rooted one-vertex maps on orientable surfaces [3]. 
 
In section 2 we present a Gray code for length-n involutions with k length-2 cycles (and 

n-2k fixed points) such that each involution is transformed into its successor by either two 
transpositions or a rotation of three elements.  This Gray code is obtained by combining the Gray 
code for FPFIs presented in section 1 with the Eades-McKay Gray code [5] for k-combinations of 
{1,...,n}. 

 
In Section 3 we present a Gray code for all length-n involutions such that each involution is 

transformed into its successor by either one transposition, two transpositions or a rotation of three 
elements. 

 
The rank of an item w of a list L is the number of items preceding w in L, and to sequence 

w is to find the successor to w in L or to determine that w is the last item of L.  For all these Gray 
codes we give ranking algorithms as well as non-recursive sequencing algorithms which run in 
O(n) worst-case time and use O(1) auxiliary variables.  We also give sequencing algorithms 
which run in O(1) worst-case time and use O(n) auxiliary variables for the Eades-McKay Gray 
code for combinations (described recursively in [5]) and our own Gray codes for FPFIs and for 
involutions with k length-2 cycles.  All the sequencing algorithms have been programmed in C 
and tested (listings are available on request); we report the time-trials we conducted. 

 
The non-recursive sequencing algorithms were derived using a method described by Chase 

[2] for word lists in a generalized lexicographical order which he called Graylex order; here we 
generalize it further to any list of words in which all the words with a given suffix form an 
interval of consecutive words.  Almost all the Gray codes in the literature have this property or 
can be transformed into one that does by left-right reversal and/or position vectors, a notable 
exception being Savage's Gray code for integer partitions [14].  We also show that the auxiliary 
array used by Erhlich [6] to determine in constant time the rightmost letter which must change to 
sequence a given word will work for any list of words with the above property provided that in 
addition the letter preceding the suffix always takes at least two distinct values in that interval.  
The I-code for FPFIs in Gray code order has this additional property; the Eades-McKay Gray 
code does not, but sequencing can be made loop-free using an array-implemented stack.  The I-
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code for all length-n involutions in Gray code order does not have this property, and although it 
too can be sequenced in O(1) time using an auxiliary array, loop-free sequencing of the induced 
Gray code for all length-n involutions is still an open problem. 

 
1. Fixed-point-free involutions 

 
The I-code for involutions [11] restricted to FPFIs is a lexicographical-order-preserving 

bijection from the set of (2n-1)×(2n-3)×...×3×1 length-2n FPFIs in one-line notation onto the 
Cartesian product of integer intervals [1,2n-1]×[1,2n-3]×...×[1,3]×[1,1].  By subtracting 1 from 
each n-tuple and then dropping its last member, which is 0, we obtain the following 
lexicographical-order-preserving bijection R from the set of length-2n FPFIs onto 
[0,2n-2]×[0,2n-4]×...×[0,2].  Let (x(1),y(1))...(x(n),y(n)), where x(i)<y(i) for all i and 
x(1)<...<x(n), be the canonical cycle notation for an FPFI.  For each i, x(i) is the smallest element 
in {1,...,2n}-{x(1),y(1),...,x(i-1),y(i-1)} and there are 2n-2i+1 elements in the set 

 
S(i) = {1,...,2n} - {x(1),y(1),...,x(i-1),y(i-1),x(i)}                             (1) 

 
from which to choose y(i).  The function R maps the FPFI (x(1),y(1))...(x(n),y(n)) onto (g1,...,gn-

1), where gi is the number of elements of S(i) which are smaller than y(i) (see the first two 

columns of Table 1). 
 

The lexicographical-order rank of the word (g1,...,gn-1) is just the number g1...gn-1, where 
each gi is in radix 2n-2i+1.  Passing between the (modified) I-code and its rank can be done in 

O(n) arithmetic operations including multiplying a small integer by a large one.  Passing between 
an FPFI F and R(F) takes O(n2) elementary operations if it takes O(n) time to remove an element 
from the indexed set S(i).  This estimate can be reduced to O(n log n) if the set S(i) is updated 
using a balanced tree or the more space-efficient algorithms in [9, pp. 578-579 (answers to 
exercises 5 and 6, p. 19] and O(n log n/log log n) using a more sophisticated data structure [4]. 

 
Example 2:  Let F = (f1,...,fn) = (7,4,6,2,8,3,1,5).  Then x(1)=1 and S(1)=(2,3,4,5,6,7,8).  

Since y(1)=f1=7, which is greater than 5 of the elements of S(1), g1=5.  Then x(2)=2 and 
S(2)=(3,4,5,6,8).  Since y(2)=f2=4, g2=1.  Then x(3)=3 and S(3)=(5,6,8).  Since y(3)=f3=6, g3=1.  

Thus R(F)=(5,1,1), so that the lexicographical-order rank of F is 511 in base (7,5,3), which is 
((5×3)+1)×5+1=81.  Conversely, knowing the rank 81 of F we can extract R(F)=(5,1,1), and by 
successive calculation of S(i) we can compute F.■ 
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The function R preserves closeness as well as lexicographic order: if gi is increased by 1, 
then y(i) must rise to the next larger value j in the set S(i).  In cycle notation, the two cycles 
(x(i),y(i)) and (j,pj) are replaced by (x(i),j) and (y(i),pj), so that in one-line notation y(i) swaps 
values with the element j, while x(i) swaps positions with pj, the nearest element to the right of 
x(i) which is in the set S(i), or, equivalently, which is larger than x(i). 

 
If we use the Gray code in [19, p. 112] for the set of (g1,...,gn-1), where g1 varies the 

slowest, then x(i) will not always swap with its immediate neighbour - for example, when R(F) 
passes from 20 to 21, F will pass from 432165 to 456123 - so that finding in O(1) time the 
element with which x(i) is to swap is a non-trivial problem.  If we instead allow g1 to vary the 
fastest, then, when gi changes, all the gj, j<i, are at their extreme values, so that S(i) is an interval.  
Thus y(i) must change by 1 and x(i) must swap with its immediate neighbour.  Thus we choose 
the latter Gray code for the set of words (g1,...,gn-1), 0≤gi≤2(n-i), and we define f(2n) to be the 
corresponding Gray code induced on the set of FPFIs of {1,...,2n} (see the last two columns of 
Table 1).  The first value of F is (2,1,4,3,...,2n,2n-1) and R(F)=(0,...,0). 

PUT TABLE 1 ABOUT HERE 
All the words with a given suffix (gi+1,...,gn-1) form an interval of consecutive words in 

which gi takes the sequence of distinct values (0,1,...,2(n-i)) if gi+1+...+gn-1 is even and 
(2(n-i),...,1,0) otherwise (in the former case we say that gi is increasing and in the latter, that it is 
decreasing).  The rank of F in f(2n) is obtained by replacing each decreasing gi in R(F) by 
2(n-i)-gi and then evaluating the resulting word as a mixed-radix integer in co-lexicographical 
order (right-to-left), so that (continuing example 2) the word (5,1,1) corresponds to the rank 
((1×5)+(4-1))×7)+5=61. 

 
The first word (g1,...,gn-1)=(0,...,0).  Each word (g1,...,gn-1) can be transformed into its 

successor using the generic sequencing algorithm listed as Algorithm 1, which generalizes the 
sequencing algorithm used in [2], [19] and many other places.  It works for any list of words 
(g1,...,gn-1) in which all the words with a common suffix (gi+1,...,gn-1) form an interval of 
consecutive words in the list, so that this interval is partitioned into sub-intervals by the sequence 
of distinct values assumed by gi (a proof of this observation can be found in [15]).  It was shown 

in [2] to work whenever all the sequences are monotone (Graylex order) but has been implicitly 
used for many lists in which this condition does not hold, such as the Gray code for set partitions 
in [6]. 

PUT ALGORITHM 1 ABOUT HERE 
For each word w in a list except the last one, the pivot is the index of the rightmost letter 

(the pivotal element) that must change to transform w into its successor.  In the above Gray code 
only one gi actually changes - all the gj, j<i, are now at their first values with respect to the new 
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suffix - and this change in R(F)=(g1,...,gn-1) induces a corresponding pair of transpositions in the 
FPFI F. 

 
Example 3: If F=(8,4,6,2,7,3,5,1), then R(F)=(g1,g2,g3)=(6,1,1).  Since g2+g3 is even, g1 

takes the sequence of values (0,1,2,3,4,5,6); so g1 is already at its final value.  Since g3 is odd, g2 
takes the sequence of values (4,3,2,1,0); so 2 is the pivot and g2 drops to 0, changing R(F) to 
(6,0,1) and F to (8,3,2,6,7,4,5,1).■ 

 
Example 4: If F=(2,1,4,3,7,8,5,6), then R(F)=(g1,g2,g3)=(0,0,1).  Since g2+g3 is odd, g1 

takes the sequence of values (6,5,4,3,2,1,0); so g1 is already at its final value.  Since g3 is odd, g2 
takes the sequence of values (4,3,2,1,0); so g2 too is at its final value.  The suffix for g3 is empty, 
with sum 0; so g3 takes the sequence of values (0,1,2).  Thus 3 is the pivot and g3 rises to 2, 
changing R(F) to (0,0,2) and F to (2,1,4,3,8,7,6,5).■ 

 
Once the generic sequencing algorithm is specialized to a particular list it can be optimized 

in various ways.  To avoid calculating the parity of gi+1+...+gn-1 for each new i we observe that 
for each j<i, gj is either 0 or 2(n-j), which are both even, so that gi is increasing if and only if it 
has the same parity as g1+...+gn-1.  We store a Boolean variable Odd which is true if g1+...+gn-1 
is odd; Odd is initialized to False for the first word (0,...,0) and changes value for each successive 
word.  Now the first, next and last value for each gi can be computed in O(1) time, so that the 

sequencing algorithm for a length-n FPFI F runs in O(n) time and uses a size-n auxiliary array for 
R(F). 

 
To obtain a sequencing algorithm for f(2n) without having to store R(F) as an auxiliary 

array we use the following theorem. 
 
Theorem 1:  Let F=(f1,...,fn) and let i be the pivot of R(F).  If Odd is True, then x(i)=2i-1, 

gi=y(i)-2i, F=(2,1,4,3,...,2i-2,2i-3,y(i)>2i,...) and i is the smallest value such that f2i-1>2i; 
otherwise x(i)=i, gi=y(i)-(i+1), F=(2n,2n-1,...,2n-i+2,y(i)<2n-i+1,...,i-1,...,2,1) and i is the smallest 
value such that fi<2n-(i-1) if there is one. 

 
Proof:  We recall that each gj, j<i, is at its extreme value, which is even.  If Odd is True, 

then  gi is the leftmost letter of R(F) which is not 0.  By the definition of the function R, x(1)=1, 

y(1)=2, x(2)=3, y(2)=4, ... , x(i-1)=2i-3, y(i-1)=2i-2, x(i)=2i-1 but y(i)>2i, leading to the first 
expression for F and thence to the first expression for i.  The set S(i)-{x(i)} is the interval [2i,2n], 
so that y(i)=gi+2i.  If Odd is False, then gi is the leftmost letter of R(F) which is not 2(n-i), if 

there is one.  By the definition of R, x(1)=1, y(1)=2n, x(2)=2, y(2)=2n-1,...,x(i-1)=i-1, y(i-1)=2n-
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i+2, x(i)=i but y(i)<2n-i+1, leading to the second expression for F and thence to the second 
expression for i.  The set S(i)-{x(i)} is the interval [i+1,2n-i+1], so that y(i)=gi+i+1.■ 

 
We illustrate the sequencing algorithm by continuing examples 3 and 4. 
 
In example 3, where F=(8,4,6,2,7,3,5,1), R(F)=(6,1,1) (which isn't stored); so Odd is False.   

Now f1=8 but f2<7; so i=2.  Then x(2)=2, y(2)=f2=4 and g2=4-(2+1)=1 which is odd; so it is 
decreasing.  Thus f4=2 trades places with its immediate left neighbour f3=6 and their mates f2=4 
and f6=3 also trade places, so that F changes to (8,3,2,6,7,4,5,1).■ 

 
In example 4, where F=(2,1,4,3,7,8,5,6), R(F)=(0,0,1) (which isn't stored); so Odd is True.  

Now f1=2 and f3=4 but f5>6; so i=3.  Then x(3)=5, y(3)=f5=7 and g3=7-2×3=1 which is odd; so it 
is increasing.  Thus f7=5 trades places with its immediate right neighbour f8=6 and their mates 
f5=7 and f6=8 also trade places, so that F changes to (2,1,4,3,8,7,6,5).■ 

 
The algorithm maintains only F, Odd and another Boolean variable Done which is 

initialized to False and becomes True when the FPFI turns out to be the last one; so it uses O(1) 
auxilliary variables but it takes O(n) time in the worst case to find the pivot i by scanning F from 
left to right.  This search can be avoided by using the auxiliary array e=(e1,...,en) introduced in 
[1] and [6] and generalized in [19, p. 112] and elsewhere. 

We generalize it further to any word list in which all the words with a common suffix 
form an interval of consecutive words in which the letter preceding the suffix takes at least 
two distinct values.  Denote by ai, zi and hi the first value, last value and successor to gi, 
respectively, in the sequence of distinct values assumed by gi as a function of the suffix 
(gi+1,...,gn-1).  Since gi takes at least two distinct values, ai is never equal to zi.  A z-word is a 
subword (gj,...,gk)=(zj,...,zk) which is maximal by inclusion: either j=1 or gj-1≠zj-1, and either k=n-
1 or gk+1≠zk+1.  From Algorithm 1 it is clear that the pivot is the smallest value of i such that 
gi≠zi.  If g1≠z1, then 1 is the pivot.  If (g1,...,gi-1) is a z-word, where i<n, then i is the pivot.  If 
(g1,...,gn-1)=(z1,...,zn-1), then it is the last word in the list and we call n the pivot.  The generic 

sequencing algorithm with loop-free pivot-finding is listed as Algorithm 2.  We will show that 
for each j, ej=j unless (gj,...,gk-1) is a z-word for some k>j, in which case ej=k.  From this it 
follows that e1 is always the pivot.  The first word is (a1,...,an-1), and since ai≠zi for all i there are 
no z-words.  Since (e1,...,en) is initialized to (1,...,n) the formula for e holds initially, and the 

comments in Algorithm 2 imply that if it holds before the algorithm is executed then it will hold 
afterwards, so that it always holds. 

PUT ALGORITHM 2 HERE OR HIGHER 
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The list of I-codes for FPFIs satisfies the condition under which Algorithm 2 works.  Using 
Theorem 1 we implemented a loop-free sequencing algorithm for FPFIs without storing the 
auxiliary array R(F) (see Algorithm 3).  The time trials indicated that neither the elimination of 
the auxiliary array R(F) nor the use of the auxiliary array e to make sequencing loop-free had any 
significant effect on execution time. 

PUT ALGORITHM 3 ABOUT HERE 
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2. Involutions with a given number of length-2 cycles 
 

We recall that f(2n) is the list of all the length-2n FPFIs in the order given by the Gray code 
of Section 1 and we denote by fR(2n) the same list in reverse order. 

 
Let C=(c1,c2,...,c2k), where c1<...<c2k, be a 2k-combination (subset) of {1,2,...,n} and F be 

an FPFI (f1,f2,...,f2k).  Denote by P(C,F) the involution whose 1-cycles are the elements of 
{1,...,n}-C and whose 2-cycles are (ci,cj) for each 2-cycle (i,j) of F.  Any involution can be 

uniquely expressed as P(C,F) for some combination C and some FPFI F. 
 

Example 5:  If C is the combination (1,4,5,7) of {1,...,8} and F is the FPFI (2,1,4,3), then 
P(C,F) is the involution (4,2,3,1,7,6,5,8).■ 

 
Given any 2k-combination C, we denote by P(C,f(2k)) the list of involutions P(C,F) as F 

runs over f(2k), with a similar definition for P(C,fR(2k)).  Given a list c(n,2k)=(C0,C1,...) of 

2k-combinations of {1,...,n}, we denote by p(c(n,2k),f(2k)) the list  
 

P(C0,f(2k))oP(C1,fR(2k))oP(C2,f(2k))o..., 

 
where o is the concatenation operator for lists (we run through the Gray code for FPFIs 
alternately forwards and backwards for each successive combination). 
 

Two adjacent involutions in the same sublist P(C2a,f(2k)) or P(C2a+1,fR(2k)) will differ by 

two transpositions: if in F the cycles (x,y) and (i,j) with x<y and |y-j|=1 are replaced by (x,j) and 
(i,y), then in P(C2a,F) or P(C2a+1,F) the cycles (cx,cy) and (ci,cj) will be replaced by (cx,cj) and 
(ci,cy), so that in one-line notation cx swaps with ci and cy swaps with cj, and each element m 
between cx and ci will satisfy pm=m. 

 
If P and its successor P' in p(c(n,2k),f(2k)) are in adjacent sublists, then P must be P(Ca,F) 

and P' must be P(Ca+1,F), where F is either the last or the first FPFI in f(2k) depending upon 

whether a is even or odd.  The difference between P and P' will, of course, depend upon the 
difference between adjacent words in c, but a minimal difference between Ca and Ca+1 as 
subsets does not guarantee a minimal difference between P and P'.  As an extreme example, 
suppose that n=2k+1, Ca=(1,2,3,...,2k), Ca+1=(2,3,...,2k,2k+1) and F=(2,1,4,3,...,2k,2k-1).  Now 
Ca+1 differs from Ca by the minimal amount - one element swapped out and one element 

swapped in - but P=(2,1,4,3,...,2k,2k-1,2k+1) and P'=(1,3,2,5,4,...,2k+1,2k) differ in all 2k+1 
elements because the element 1 swapped out of Ca and the element 2k+1 swapped in have 2k-1 
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elements in Ca between them (larger than 1 but smaller than 2k+1).  Even a single element in Ck 

between the element swapped in and the element swapped out, as occurs in both the Liu-Tang 
Gray code [10] for combinations and the Gray code in [2], results in a rotation of 5 elements in 
P(Ca,F) (see the example below). 

 
With the Eades-McKay Gray code [5], on the other hand, Ca contains no elements between 

the element old swapped out and the element new swapped in (and this is optimal in the sense 
that for some values of n and k there is no Gray code in which the element swapped in and the 
element swapped out differ by 1 [12]).  Then old will simply be replaced by new in the sorted list 
Ca.  For any FPFI F, P(Ca,F) will be transformed into P(Ca+1,F) by replacing the two cycles 
(old,mate), (new) by the two cycles (old), (new,mate), so that pold changes from mate to old, 
pmate from old to new and pnew from new to mate and in one-line notation the transformation 
made is the rotation (mate,old,new) = (pmate,pnew,pold).  The corresponding Gray code for 

involutions p(n,k) = P(c(n,2k),f(2k)) will have thus the property that any involution is 
transformed into its successor by either two transpositions or a rotation of three elements. 

 
The Eades-McKay Gray code c(n,k) for k-combinations of {1,...,n} (modified by reversing 

each word, reversing the whole list and subtracting each number from n+1) is described 
recursively by  

 
c(n,k) = c(n-1,k) o cR(n-2,k-1)n o c(n-2,k-2)(n-1)n,                   (2) 

 
anchored by c(k,k)=(1,2,3,...,k), c(n,1)=(1)o(2)o...o(n) and c(n,0) = the empty list.  See Table 2 
for a comparison of the Eades McKay Gray code with the Liu-Tang Gray code. 

PUT TABLE 2 ABOUT HERE 
Continuing example 5, the involution (1,4)(2)(3)(5,7)(6)(8)=(4,2,3,1,7,6,5,8)=P(C,F), 

where C is the combination (1,4,5,7) of {1,...,8} and F is the FPFI (1,2)(3,4)=(2,1,4,3), the first 
length-4 FPFI in f(4).  The next combination after C in the Liu-Tang Gray code is C'=(1,2,4,7), 
and P(C',F)=(1,2)(3)(4,7)(5)(6)(8)=(2,1,3,7,5,6,4,8), which is obtained from (4,2,3,1,7,6,5,8) by 
the 5-element rotation (4,2,1,7,5).  On the other hand, the next combination after C in the Eades-
McKay Gray code is C"=(1,2,5,7), and P(C",F)=(1,2)(3)(4)(5,7)(6)(8)=(2,1,3,4,7,6,5,8), which is 
obtained from (4,2,3,1,7,6,5,8) by the 3-element rotation (4,2,1).■ 

 
To obtain a non-recursive description of c(n,k) we define run(i), for each i, to be the 

maximum value of j such that ci+1,...,ci+j are consecutive integers, and we use the following 

theorem.  Note that whenever run(i) is even the Eades-McKay Gray code follows the same rule 
shown in [2] to be followed by the Liu-Tang Gray code. 
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Theorem 2:  All the combinations with the same suffix (ci+1,...,ck) form an interval of 

consecutive words in which ci takes the sequence of distinct values 

i,i+1,...,m-1,m if k-i is even and run(i) is even, 
m,m-1,...,i+1,i if k-i is odd and run(i) is even, 
m,i,i+1,...,m-1 if k-i is even and run(i) is odd, 
m-1,...,i+1,i,m if k-i is odd and run(i) is odd, 

where m is equal to n if i=k and ci+1-1 otherwise. 

 
Proof. This proposition is true for the anchoring lists c(k,k)=(1,2,3,...,k), 

c(n,1)=(1)o(2)o...o(n) and c(n,0)=the empty list.  Suppose that k≥2 and n≥k+1 and that the 
proposition is true for the lists c(n-1,k), c(n-2,k-1) and c(n-2,k-2). 

 
The sublists c(n-1,k), cR(n-2,k-1)n and c(n-2,k-2)(n-1)n of c(n,k) all have the property that 

all the words with a common suffix form an interval of consecutive words, and this property is 
passed on to c(n,k) because c(n-1,k) consists of all the combinations such that ck<n, cR(n-2,k-1)n 
of those such that ck=n and ck-1<n-1, and c(n-2,k-2)(n-1)n of those such that ck=n and ck-1=n-1 so 

that any two words in different sublists can have only the empty suffix in common. 
 
It remains to verify the proposition that the sequence of (distinct) values attained by each ci 

in each of those three sublists is the one stated in the theorem. 
 
The last letter ck takes the sequence of values k,...,n-1 in the sublist c(n-1,k) and the value n 

in each of the other two sublists; so it behaves as it should, since run(k) is always 0.  The second-
last letter ck-1 behaves as it should in the sublist c(n-1,k) by the induction hypothesis, and since 

its suffix is different in this sublist from in the other two we can treat this sublist by itself.  In 
cR(n-2,k-1)n it takes the sequence of values n-2,...,k,k-1 by the induction hypothesis, and in 
c(n-2,k-2)(n-1)n it takes the value n-1; so that in cR(n-2,k-1)n o c(n-2,k-2)(n-1)n it takes the 
sequence of values n-2,...,k,k-1,n-1, which satisfies the proposition since run(k-1) is always 1. 

 
For the other letters ci, i≤k-2, the sublists can be treated separately, since ci will have a 

different suffix in each of these sublists. 
 
The proposition is true in the sublist c(n-1,k) by the induction hypothesis. 
 
The sequence of values attained by ci for 1≤i≤k-2 in the interval of words with a common 

suffix is the reverse in cR(n-2,k-1) of what it is in c(n-2,k-1).  But when n is appended at the right 
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of each word in cR(n-2,k-1) to make cR(n-2,k-1)n, 1 is added to each k, changing the parity of k-i, 
and run(i) is never changed, which, according to the proposition, reverses the sequence of values 
attained by ci.  It follows that the proposition holds in cR(n-2,k-1)n. 

 
Appending n-1 and then n to the right of each word in c(n-2,k-2) changes k by 2 and run(i) 

by either 0 or 2; so the proposition holds in c (n-2,k-2)(n-1)n  as well. 
 
The result follows by induction on n.■ 
 
We note here that Ruskey [13] proved that the Knuth Gray code [18] for integer 

compositions is isomorphic to the Eades-McKay Gray code, so that Klingsberg's non-recursive 
description [8] of Knuth's Gray code could be used to obtain a non-recursive description of the 
Eades-McKay Gray code. 

 
To optimize the generic sequencing algorithm for this Gray code we use the following 

theorem. 
 

Theorem 3:  Let r=run(0).  Then the pivot cannot have any value other than 1, r or r+1.  If 
the pivot is r+1, then cr+1 drops to cr+1. 

 
Proof.  If k=1, then the pivot, if it exists, must be 1; so we assume that k>1. 
 
Suppose that r>1, so that c1=c2-1, and suppose also that 1 is not the pivot, so that c1 is at its 

last value.  Since c1 is at its maximum value m as defined in the statement of Theorem 2, either k-
1 and run(1)=r-1 must have the same parity or else m=1.  For each i, 1≤i≤r-1, ci=ci+1-1, so that ci 

is also at its maximum value.  If k-1 and run(1) have the same parity, then so do k-i and run(i)=r-
i, and if the maximum value of c1 is 1 then the maximum value of ci is i, so that in either case 
each of these ci will be at its last value.  Therefore the pivot cannot be smaller than r. 

 
Since r=run(0), either r=k or else cr<cr+1-1.  If r=k, then either cr=n, in which case the 

combination is the last one, or else r is the pivot.  Suppose that r<k, so that cr<cr+1-1, and 
suppose also that r is not the pivot, so that cr is at its last value.  Since cr is not at its maximum 

value, it follows that k-r and s=run(r) must have opposite parity. 
 
Suppose that s is even, so that k-r is odd, and so cr=r.  Then k-(r+1) is even and 

run(r+1)=s-1, which is odd.  Also, since run(r)>1, cr+1 is at its maximum value; so it must jump 
to r+1, which is cr+1. 
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Suppose that s is odd and s>1.  Then k-r is even, and so cr=cr+1-2.  Also k-(i+1) is odd and 

run(r+1)=s-1, which is even, and cr+1 is at its maximum value; so it drops by 1 to cr+1. 

 
Finally, suppose that s=1, so that k-r is even.  Then cr+1=cr+2>r+1.  Also, k-(r+1) is odd; 

so once again cr+1 drops by 1 to cr+1 unless cr+1 is at its maximum value and run(r+1) is odd.  
But that would imply that cr+1=cr+2-1, which contradicts the fact that run(r)=1. 

 
In all cases where neither 1 nor r is the pivot and r<k, r+1 is the pivot and cr+1 drops to 

cr+1.■ 

 
It follows that the generic sequencing algorithm, specialized to the Eades-McKay Gray 

code for combinations, becomes the algorithm listed as Algorithm 4.  The only variable that has 
to be maintained from one combination to the next is the Boolean variable Done, which is true if 
the current combination is the last one.  The first combination is (1,2,...,k) and for this 
combination Done is False. 

PUT ALGORITHM 4 ABOUT HERE 
Once r=run(0) and s=run(r) have been computed, testing whether c1 or cr is at its last value 

and, if not, changing it to its next value can be done in O(1) time using Theorem 2.  It takes O(k) 
time to compute r and s by scanning the combination, so that the sequencing algorithm runs in 
O(k) time and uses O(1) auxiliary variables. 

The auxiliary array e cannot be used to make the algorithm run in O(1) time because there 
are proper suffixes which are not common to more than one word (for example, the suffix (4) in 
Table 2).  Instead we store the lengths of the maximal subwords of consecutive integers in the 
word (c1,c2,...,ck) on a stack, with the lengths r and s of the leftmost two such subwords on the 

top of the stack.  At most the top two elements of the stack and the top-of-stack index have to be 
updated; so this version of the sequencing algorithm runs in O(1) time.  Both versions of this 
algorithm can easily be modified to generate non-decreasing (rather than strictly increasing) 
sequences of integers between 1 and n, as well as compositions of n where two adjacent elements 
change value from one composition to the next (but not always by 1).  A loop-free 
implementation of the Knuth-Klingsberg Gray code for integer compositions (in which two 
elements which are not always adjacent change by 1) appears in [15]. 

 
Time trials indicate that introducing the stack reduces the run-time by about 5% for 

generating c(2k,k).  We have implemented the Liu-Tang Gray code so that it runs in O(1) worst-
case time and uses O(1) auxiliary variables by using the fact that the pivot differs by at most 2 
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from one combination to the next [15] (see Table 2); this implementation runs more than twice as 
quickly as either implementation for generating c(n,k).  It too can be modified to sequence 
integer compositions in O(1) time using O(1) auxiliary variables (but three integers may change).  
We note here that [2] also sequences combinations in O(1) time and extra space but in a different 
order. 

 
Combinations can be ranked and unranked in c(n,k) in O(n) arithmetic operations using the 

following ranking formula (which is admittedly more complicated than ranking combinations in 
lexicographical order but is included here for its recreational value): 

 
Rank(c1,c2,... ,cn) =

(−1)k−i

ci
i

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
 if run(i) is even

ci+1 − 2
i −1

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
+

ci
i

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
 if ci < ci+1 −1

0 otherwise

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 
 otherwise

⎧ 

⎨ 

⎪ ⎪ 

⎩ 

⎪ 
⎪ 

⎫ 

⎬ 

⎪ ⎪ 

⎭ 

⎪ 
⎪ 

i=1

k

∑ − (k mod 2).           (3)

 
 

The rank of the involution P(C,F) in P(C0,f(2k))oP(C1,fR(2k))oP(C2,f(2k))o... is 
(2k-1)×(2k-3)×...×3 times the rank r of C in c(n,2k) = C0,C1,C2,... plus the rank of F in either 

f(2k) if r is even or in fR(2k) otherwise. 
 

When the sequencing algorithm of Algorithm 3 processes the last word of f(2k), Odd will 
be False and e will be (k,2,3,4,...,k).  To begin generating fR(2k) (after changing C to its 
successor) it suffices to change Odd to True and e1 from k to 1 (Odd now refers to the parity of 

the rank of the involution P(C,F)).  Thus, we can sequence each involution P(C,F) of 
P(C0,f(2k))oP(C1,fR(2k))oP(C2,f(2k))o... in O(1) time if we keep four auxiliary arrays: F, e, C 

and the stack of run-lengths of C.  The array e is of size k and the other three auxiliary arrays are 
all of size 2k; so the extra space needed is in O(k), and thus in O(n). 

 
If we are prepared to scan each involution P=P(C,F) we can get enough information about 

C and F to update P without storing any auxiliary arrays, so that the algorithm runs in O(n) 
worst-case time but uses only O(1) auxiliary variables.  To this end we observe that an element pi 
of P is in C iff pi≠i and that the form of F as given in Theorem 1 has to be modified to the 

corresponding FPFI on the elements of C (see [16] for details).  This sequencing algorithm ran 
only 3% slower than the loop-free algorithm that uses four auxiliary arrays. 
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3. All length-n involutions 
 

The I-code is a lexicographical-order-preserving injection that maps each length-n 
involution with c cycles onto a c-tuple of non-negative integers, except that if c=n then the last 
member of the n-tuple, which is a zero, is dropped.  A general involution P will have 1-cycles 
(x(i)) as well as 2-cycles (x(i),y(i)).  To make the cycle notation canonical, we insist that x(i)<y(i) 
and that x(1)<...<x(c).  If (x(i)) is a 1-cycle we define y(i)=x(i), so that in general x(i)≤y(i) for all i, 
with equality in the case of a 1-cycle.  Let S(1)={1,...,n}, and for each i from 2 to c+1 let 

 
S(i) = S(i -1) - {x(i-1)}'{y(i-1)}.                                       (4) 

 
The smallest element in S(i) is x(i), and y(i) can take any value in S(i) including x(i).  The word 
(g1,...,gc), where gi is the number of elements of S(i) which are smaller than y(i), is the I-code for 

P, with the exception noted above.  By padding each word on the right with zeroes to make it of 
length n-1 we obtain a lexicographical-order-preserving injection from the set of length-n 
involutions P into the set of (n-1)-tuples of non-negative integers R(P)=(g1,...,gn-1). 

 
Example 6:  If P=(4,2,5,1,3,6)=(1,4)(2)(3,5)(6) in canonical cycle notation, then x(1)=1, 

y(1)=4, x(2)=y(2)=2, x(3)=3, y(3)=5 and x(4)=y(4)=6, so that R(P)=(3,0,1,0,0) (the last zero is 
padding). 

 
  As P is changed to its lexicographical-order successor its pivotal element (which is now 

the leftmost letter which changes) may increase by more than 1, but the pivotal element of R(P) 
always increases by 1 (see Table 3). 

PUT TABLE 3 ABOUT HERE 
Just as with FPFIs one can pass between a general involution P in one-line notation and 

R(P) by successive computation of S(i) from (4).  In [11] the algorithms are written explicitly and 
it is stated that their complexity is O(n2).  This estimate is sharp if it takes linear time to remove 
an element from an indexed set; as with FPFIs it can be reduced to O(n log n) or better using 
more efficient deletion algorithms. 

 
In [11] there is an algorithm for passing from R(P) to the lexicographical-order rank of P 

which takes O(n log n) arithmetic operations and uses a table of size O(n2).  We improve the time 
estimate to O(n) and the space estimate to O(1). 

 
We describe the set of words (g1,...,gn-1) that are the images of length-n involutions under 

the function R.  In particular, given any such word with prefix (g1,...,gi-1), we find the maximum 
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value that gi can attain. Let #(S) represent the cardinality of the set S.  Then #(S(1))=n, and from 
(4) it follows that for all i, 1<i≤c+1, if gi-1=0 so that y(i-1)=x(i-1), then #(S(i))=#(S(i-1))-1, and if 
gi-1>0 so that y(i-1)>x(i-1), then #(S(i))=#(S(i-1))-2.  Since gi is the number of elements of S(i) 

less than y(i), it can take any integer value from 0 up to #(S(i))-1, whch we denote by b(i) (a 
function not only of i but also of the prefix (g1,...,gi-1)), which can be calculated recursively from 

formula (5): 
 

b(1) = n −1 and for 1 < i ≤ c +1

 b(i) =
b(i −1) −1 if gi−1 = 0,
b(i −1) − 2 if gi−1 > 0.
⎧ 
⎨ 
⎪ 

⎩ ⎪                                              (5)
 

 

From the definition of b(i), b(c+1)=-1 because S(c+1)={}; so the values of all the b(i) can 
be calculated from (5) for i decreasing as well as increasing. 

 
Let I(n) be the number of length-n involutions.  There is a closed-form formula for I(n) in 

[7], but it is easier to evaluate even a single value of I(n) from the recursive formula (6) below: 
 

I(0)=I(1)=1 and for n≥2, I(n)=I(n-1)+(n-1)I(n-2).                       (6) 
 

This recursion follows from the fact that there are I(n-1) involutions P=(p1,p2,...,pn) with p1=1 
and I(n-2) involutions for each value 2,...,n of p1 [11]. 

 
Let #(g1,...,gi-1) be the number of involutions whose padded I-codes have prefix (g1,...,gi-1).  

These involutions are induced by the involutions of the set S(i), and since #(S(i))=b(i)+1, where 
b(i) is computed recursively by (5), we have 

 
#(g1,...,gi-1) = I(b(i)+1).                                               (7) 

 
To calculate the rank of (g1,...,gn-1) we note that among all the words with prefix 

(g1,...,gi-1), the number of words that come before the first word with prefix (g1,...,gi) is 0 if gi=0, 
and otherwise it is #(g1,...,gi-1,0)+(gi-1)#(g1,...,gi), which, by (7) and (5), is I(b(i))+(gi-1)I(b(i)-1).  

We thus obtain the following ranking formula: 
 
 

rank(g1,.. ., gn−1) =
0 if gi = 0

I(b(i)) + (gi −1)I(b( i) −1) otherwise ,
⎧ 
⎨ 
⎩ i=1

n−1
∑                    (8)
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where I(n) is given by (6) and b(i) by (5). 
 

To find the word of rank r, for i from 1 to n-1 we let gi be the largest value such that 

subtracting the summand of (8) from r leaves a non-negative number:  
 

gi =
0 if r < I(b(i))

1+ (r − I(b)) / I(b −1)⎣ ⎦ otherwise ,                           (9)⎧ 
⎨ 
⎩  

 
where I(n) is given by (6) and b(i) by (5). 

 
Ranking and unranking the words can be done in O(n) arithmetic operations with or 

without a precomputed table of I, so that the complexity of ranking and unranking involutions is 
dominated by that of passing between an involution and its I-code. 

 
We define the following Gray code on the set of words (g1,...,gn-1) such that 0≤gi≤b(i): in 

any interval of words with prefix g1g2...gi-1, let gi take the sequence of distinct values 

 

si =
1,2, .. ., b(i), 0 if g1+. ..+gi−1 is even,
0, b(i), . .., 2,1 if g1+... +gi−1 is odd.

⎧ 
⎨ 
⎩ 

                                    (10)
 
 

The rank of the word (g1,...,gn-1) in Gray code order is given by 

 

I(b(i) −1) *
gi −1 if gi > 0
b(i) if gi = 0

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 if g1+. ..+gi−1 is even

0 if gi = 0
I(b(i)) + (b(i) − gi )I(b( i) −1) otherwise
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 otherwise.
                          (11)

⎧ 

⎨ 
⎪ 

⎩ 
⎪ i=1

n−1
∑

 
 
To unrank, subtract the maximum value possible from r without making it negative by 

setting 
 

gi =

0 if r ≥ I(b(i) −1)* b( i)
1+ r / I(b( i) −1)⎣ ⎦  otherwise
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
 if g1+...+gn−1 is even

0 if r < I(b(i))
b − (r − I(b(i))) / I(b(i) −1)⎣ ⎦  otherwise
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
 otherwise .

            (12)

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 
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The first word (g1,...,gn-1) in this Gray code is (1,0,...,0) and the last one is (0,...,0).  To find 

the successor to a given word we use the generic sequencing algorithm listed as Algorithm 1 with 
left and right reversed and with some optimizations introduced for the sake of efficiency. 

 
To avoid computing the parity of g1+...+gi-1 from scratch for each i, we store the parity of 

g1+...+gi-1 in a Boolean variable Odd, and for each word we initialize another variable OddPrefix 
to Odd and then while scanning the word from right to left to search for the pivot we change 
OddPrefix whenever gi is odd.  To avoid computing b(i) recursively (from left to right) from (5), 
we store c, begin the right-to-left scan from i=c instead of n-1 (if c=n we know that the word is 
(0,...,0)), and during the scan we initialize a variable b to -1 and increase it by 1 if gi=0 and by 2 
otherwise (expressing b(i) in terms of b(i+1) using (5)). 

 
Further economies can be made using the following two theorems. 
 
Theorem 4:  If Odd is true, then the pivot is c if gc>0 and c-1 otherwise.  If Odd is false, let 

i be the largest index such that gi>0 (if no such i exists then the pivot is 0).  Then the pivot is i if 
gi>1 and i-1 otherwise.■ 

 
Theorem 5:  Let i>0 be the pivot.  Then the suffix (gi+1,gi+2,...,gn-1) changes from 00...0 to 

10...0 if gi jumps from an even number to 0, from 10...0 to 00...0 if gi  jumps from 0 to an even 
number, and is unchanged otherwise.   The value of c decreases by 1 if gi jumps from 0 to an odd 
number, increases by 1 if gi jumps from an odd number to 0, and is unchanged otherwise.  The 

value of Odd always changes.■ 
 
The reader is invited to verify these theorems for n≤5, as well as Theorem 6 which shows 

that this Gray code induces a Gray code on the set of length-n involutions, by examining Table 4. 
PUT TABLE 4 ABOUT HERE 

Theorem 6:  In passing from an involution P and R(P)=(g1,...,gn-1) to its successor, one 
pair of elements of P swaps places if gi passes between 0 and an odd number, two pairs swap 
places if gi passes between 0 and an even number greater than 2 or between 1 and 2 if gi+1=1, and 

three elements rotate under all other conditions. 
 
Proof:  We do a case-by-case analysis, illustrating each case with a table in which the first 

line contains the elements of Si in increasing order, and the second and third lines contain the old 

and new elements (with the old names) of P occupying the positions whose index is given 
directly above them in the first line (see Table 5).■ 

PUT TABLE 5 ABOUT HERE 
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Implementation details of the sequencing algorithm for the involution P, with and without 
storing the auxiliary array R(P), are given in [17].  If the auxiliary array is not stored, then only 
O(1) auxiliary variables are used; in either case the worst-case time-complexity is O(n).  Storing 
the array reduced the execution time by about 4% and using Theorem 4 to find the pivot reduced 
execution time by about 20%. 

 
The Gray code for I-codes can be sequenced in O(1) time by storing the positions of all the 

non-zero elements on a stack.  If i is the pivot of an I-code, then x(i) is the pivot of the 
corresponding involution (see Table 5); however, the array (x(1),x(2),...,x(c)) can change by Ω(n) 
letters from one involution to the next.   Worst-case constant-time sequencing of involutions is 
still an open problem. 
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    lexicographical            Gray code 
           order                       order 

       F   R(F)       F   R(F) 
    214365  00     214365  00 
    215634  01     341265  10 
    216543  02     432165  20 
    341265  10     532614  30 
    351624  11     632541  40 
    361542  12     645231  41 
    432165  20     546213  31 
    456123  21     456123  21 
    465132  22     351624  11 
    532614  30     215634  01 
    546213  31     216543  02 
    564312  32     361542  12 
    632541  40     465132  22 
    645231  41     564312  32 
    654321  42     654321  42 
 

Table 1 
The fixed-point-free involutions F of {1,...,6} and their I-codes R(F) 

in lexicographical and Gray-code order. 
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Search for the leftmost gi which is not at the last value in its sequence; 
if such a gi is found then { i is the pivot } 
     Change gi to the next value in the sequence; 
     Change each gj, j<i, which is not already at the first value in its sequence to the first value 
else the current word is the last one. 
 

Algorithm 1 
A generic sequencing algorithm for transforming the word (g1,...,gn-1) into its successor using the 

sequence of distinct values attained by gi as a function of its suffix (gi+1,...,gn-1). 
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{Before execution:} 

{for all j, e[j]=j unless (g[j],...,g[k-1]) is a z-word for some k>j, in which case e[j]=k. } 
i:=e[1]; 
if i=n then { (g[1],...,g[n-1])=(z[1],...,z[n-1]) } 
    Done:=True; return 
end if;  {Otherwise (g[1],...,g[i-1])=(z[1],...,z[i-1]) but g[i]≠z[i] so that i is the pivot .} 

{ In either case (e[1],...,e[i-1],e[i])=(i,2,3,...,i-1,i).  } 
(g[1],...,g[i-1],g[i]) := (a[1],...,a[i-1],h[i]); { O(1) changes in the case of a Gray code } 
update any other auxiliary variables; 
e[1]:=1; 
if g[i]=z[i] then { Either e[i+1]=i+1, g[i+1]≠z[i+1] and (z[i]) is a z-word or else } 

 { e[i+1]=k+1>i+1, (g[i+1],...,g[k]) was a z-word and now (g[i],g[i+1],...,g[k]) is a z-word. } 
    e[i]:=e[i+1]; { Now (g[i],...,g[k]) is a z-word and e[i]=k+1 whether k=i or not. } 
    e[i+1]:=i+1 { Since g[i]=z[i], g[i+1] cannot begin a z-word. } 
end if. { Otherwise either i=1 or g[1]=a[1] and in either case g[1]≠z[1] and e[1] is still 1. } 

{After execution:} 
{for all j, e[j]=j unless (g[j],...,g[k-1]) is a z-word for some k>j, in which case e[j]=k. }  

 
Algorithm 2 

Generic sequencing algorithm for (g[1],...,g[n-1]) with loop-free pivot-finding 
using the auxiliary array (e[1],...,e[n]).  Here a[i], z[i] and h[i] are, respectively, the first value, 
the last value and the next value after g[i] in the sequence of distinct values taken by g[i] in the 

interval of words with the suffix (g[i+1],...,g[n-1]).  Initally g[j]=a[j] and e[j]=j for all j. 
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i:=e[1]; { i is the pivot in R(F)=(g[1],...,g[n-1]) } 
if i=n then { F is the last FPFI } 
    Done:=True; return 
end if; 
{ in what follows, x = x(i), y = y(i), g = g[i], and Up is true if g[i] is increasing } 
if Odd then { R(F) has odd sum } 
    x:=2*i-1; y:=f[x]; g:=y-2*i; Up:=(g is odd) 
else 
    x:=i; y:=f[x]; g:=y-(i+1); Up:=(g is even) 
end if; 
if (Up) then { g[i] must increase } 
     g:=g+1; j:=y+1; { f[j] is the right neighbour of f[y]=x } 
else  { g[i] must decrease } 
     g:=g-1; j:=y-1; { f[j] is the left neighbour of f[y]=x } 
end if; 
swap f[y]=x with f[j]; swap f[x]=y with f[f[j]]=j; 
Odd:=not(Odd); 
e[1]:=1; 
if (g=0) or (g=2*(n-i)) then { the new g[i] is at its last value } 
    e[i]:=e[i+1]; 
    e[i+1]:=i+1 
end if. 

 
Algorithm 3 

 O(1)-time sequencing algorithm for the FPFI F=(f[1],...,f[2n])  
using only the size-n auxiliary array e (initialized to (1,2,...,n)). 
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1234    1234 
1245    1235 
2345    1245 
1345    1345 
1235    2345 
1256    2346 
2356    1346 
1356    1246 
3456    1236 
2456    1256 
1456    1356 
1246    2356 
2346    2456 
1346    1456 

 1236_   3456_ 
 

Table 2 
The Liu-Tang Gray code (left) and the Eades-McKay Gray code (right) 
 for the 4-combinations of {1,...,6}. The pivotal element is underlined. 
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r:=run(0); 
if r>1 then { run(1)=r-1 and the sequence of distinct values taken by c[1] is given in Theorem 2 } 
    if c[1] is not at its last value then { the pivot is 1 } 
        c[1] := its next value; return 
    end if 
end if; 
s:=run(r);  { the sequence of distinct values taken by c[r] is given in Theorem 2 } 
if c[r] is not at its last value then { the pivot is r } 
    c[r] := its next value; return 
end if; 
if r<k then { the pivot is r+1 } 
    c[r+1] := c[r]+1 
else { the current combination is the last one } 
    Done := True 
end if. 

Algorithm 4 
Non-recursive sequencing algorithm for the Eades-McKay Gray code 

for k-combinations of {1,...,n}.  Initially c[i]=i for all i and Done is False. 
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  n=1     n=2     n=3       n=4               n=5 

R(P) P  R(P) P  R(P) P    R(P)  P    R(P)   P    R(P)   P 
     1    0 12   00 123   000 1234   0000 12345  1000 21345 
          1 21   01 132   001 1243   0001 12354  101o 21354 
                 10 213   010 1324   0010 12435  110o 21435 
                 20 321   020 1423   0020 12543  120o 21543 
                          100 2134   0100 13245  2000 32145 
                          11o 2143   011o 13254  201o 32154 
                          200 3214   0200 14325  210o 34125 
                          21o 3412   021o 14523  220o 35142 
                          300 4231   0300 15342  3000 42315 
                          31o 4321   031o 15432  301o 42513 
                                                 310o 43215 
                                                 320o 45312 
                                                 4000 52341 
                                                 401o 52431 
                                                 410o 53241 
                                                 420o 54321 

Table 3 
Involutions P of length n and the padded I-code R(P) for 1≤n≤5 in lexicographical order. 

A padding 0 is written as o and the pivotal element is underlined. 
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  n=1     n=2      n=3       n=4              n=5 

R(P) P  R(P) P  R(P) P    R(P)  P     R(P)   P    R(P)   P 
     1    1 21   10 213   100 2134   1000 21345  0100 13245 
          0 12   20 321   11o 2143   101o 21354  011o 13254 
                 01 132   21o 3412   120o 21543  021o 14523 
                 00 123   200 3214   110o 21435  0200 14325 
                          300 4231   210o 34125  0300 15342 
                          31o 4321   220o 35142  031o 15432 
                          010 1324   201o 32154  0010 12435 
                          020 1423   2000 32145  0020 12543 
                          001 1243   3000 42315  0001 12354 
                          000 1234   301o 42513  0000 12345 
                                     320o 45312 
                                     310o 43215 
                                     410o 53241 
                                     420o 54321 
                                     401o 52431 
                                     4000 52341 
                     

Table 4 
Involutions P of length n and the padded I-code R(P) for 1≤n≤5 in Gray code order.  In R(P), a 
padding 0 is written as o and the pivotal element is underlined.  In P, two elements which swap 

or three which rotate are underlined, and if two pairs exchange then one of them is in italics. 
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Case 1: gi>0 and increases by 1:  y(i) rises to the next value in Si, say j. 
    Subcase 1a: gi increases from 1 to 2 and gi+1=1: pj≠j 
index:  x(i) y(i)  j  pj 
before:  y(i) x(i)  pj  j  
after:  j  pj x(i) y(i)  Two pairs swap. 
 Subcase 1b:  otherwise:  pj=j. 
index:  x(i)  *  *  * y(i) pj=j 
before:  y(i)    x(i)  j 
after:   j    y(i) x(i)  Three elements rotate. 
Case 2:  gi>1 decreases by 1:  y(i) falls to the next value in Si, say j. 
The analysis is similar to that of Case 1 except that the second and third columns (with y(i) and j 
in the first line) change places. 
Case 3:  gi jumps from b(i) to 0: y(i) drops from the largest member of Si to x(i). 

 Subcase 3a:  b(i) is even: the suffix b(i)00...0 changes to 010...0. 
  Subsubcase 3a.i:  b(i)>2:  
index: x(i)  x(i+1)=y(i+1)  x(i+2)=y(i+2) *  x(i) 
before: y(i)  y(i+1)  y(i+2)    x(i) 
after: x(i)  y(i+2)  y(i+1)    y(i) Two pairs swap. 
  Subsubcase 3a.ii:  b(i)=2: 
index: x(i)  x(i+1)=y(i+1)  y(i) 
before: y(i)  y(i+1)  x(i) 
after: x(i)  y(i)  y(i+1)  Three elements rotate. 
 Subcase 3b:  b(i) is odd:  
index: x(i) * * y(i) 
before: y(i)   x(i) 
after: x(i)   y(i) One pair of elements swaps. 
Case 4:  gi jumps from 0 to b(i):  y(i) jumps from x(i) to j, the largest element of Si. 

 Subcase 4a:  b(i) is even: the suffix 010...0 changes to b(i)10...0. 
  Subsubcase 4a.i:  b(i)>2: 
index: x(i)=y(i) x(i+1) y(i+1) * pj=j 
before:    y(i) y(i+1) x(i+1)  pj=j 
after:     j x(i+1) y(i+1)  y(i) Two pairs swap. 
  Subsubcase 4a.ii:  b(i)=2: 
index: x(i)=y(i) x(i+1)=pj y(i+1)=j 
before:    y(i)     j    pj 
after:     j     pj   y(i) Three elements rotate. 

 Subcase 4b:  b(i) is odd: 
index: x(i)=y(i) * * pj=j 
before:    y(i)    j 
after:     j   y(i)  One pair of elements swaps. 
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Table 5 

Transformation induced on an involution P by passing from R(P) to its successor in the Gray 
code 


